Часть 1

2. Рассмотрим пример.
Рассчитайте массу серной кислоты, которая взаимодействует с 5,6 г гидроксида калия. В результате реакции образуется сульфат калия и вода.


Часть II

1. Заполните пропуски, проанализировав уравнение реакции.

2. Рассчитайте массу магния, который может сгореть в кислороде объёмом 33,6 л (н. у.). Схема химической реакции:

3. В реакцию вступили 13 г цинка и соляная кислота. В результате реакции образовались водород и хлорид цинка. Определите объём (н. у.) и число молекул водорода.

4. Навеска 1,12 г железа полностью «растворилась» в растворе сульфата меди (II). Вычислите массу образовавшегося осадка меди. Какое количество вещества сульфата железа (II) получилось при этом?

5. Вычислите массу гидроксида меди (II), который образуется при взаимодействии 200 г 20%-го раствора гидроксида натрия и избытка раствора сульфата меди (II). В результате реакции образуется также сульфат натрия.

6. Определите объём азота N2, необходимого для взаимодействия с кислородом, если в результате реакции получается 250 мл оксида азота (II).

7. Какой объём воздуха потребуется для взаимодействия 17,5 г лития, содержащего 20% примесей? В результате реакции получается оксид лития.

8. Придумайте задачу, при решении которой необходимо использовать следующую схему реакции:

Запишите условие задачи и решите её.
При взаимодействии 2 моль серной кислоты с нитратом свинца, образовался осадок, найти его массу.

Задача 121.
Смешано 7,3г НСI с 4,0г NH 3 . Сколько граммов NH 4 С1 образуется? Найти массу оставшегося после реакции газа.
Решение:
Уравнение реакции имеет вид:

NH 3 + HCl = NH 4 Cl

Молекулярные массы HCl, NH 3 и NH 4 Cl соответственно равны 36,453, 17 и 53,453. Следовательно, их мольные массы составляют 36,453; 17; 53,453г/моль. Согласно уравнению реакции 1 моль HCl реагирует с 1 моль NH 3 , образуя 1 моль NH4Cl. Находим, какое вещество взято в недостатке:

В недостатке взято 0,2 моля HCl, значит, расчёт массы, образовавшейся соли NH 4 Cl, производим по количеству соляной кислоты:

m(NH 4 Cl) = 0,2 . 53,453 = 10,69г.

Затем рассчитаем массу NH3, вступившего в реакцию с HCl:

m(NH 3) = 0,2. 17 = 3,4г.

Ответ: 10,69г NH 4 Cl; 3,4г NH 3 .

Задача 122.
Какой объем воздуха потребуется для сжигания 1м 3 газа, имеющего следующий состав по объему: 50% Н 2 , 35% СН 4 , 8% СО, 2% С 2 Н 4 и 5% негорючих примесей. Объемное содержание кислорода в воздухе равно 21%.
Решение:
Рассчитаем объём кислорода, необходимый для сжигания газов.

а) Уравнение реакции сгорания водорода:

2Н 2 + О 2 = 2Н 2 О

Находим объём водорода, содержащегося в 1м 3 газа из пропорции:

Согласно уравнению реакции на сжигание 2 молей Н 2 расходуется 1 моль О 2 т. е. на сжигание 44,8л водорода требуется 22,4л кислорода.

б) Уравнение реакции сгорания метана:

СН 4 + О 2 = СО 2 + 2Н 2 О

Находим объём метана, содержащегося в 1м 3 газа из пропорции:

Согласно уравнению реакции на сжигание 1 моль СН 4 расходуется 2 моля О 2 т. е. на сжигание 22,4л метана требуется 44,8л кислорода.

Находим объём расходуемого кислорода из пропорции:

в) Уравнение реакции горения угарного газа:

2CO + O 2 = 2CO 2

Находим объём угарного газа, содержащегося в 1м 3 газа из пропорции:

Согласно уравнению реакции на сжигание 2 молей СО расходуется 1 моль О 2 т. е. на сжигание 44,8л угарного газа требуется 22,4л кислорода.

Находим объём расходуемого кислорода из пропорции:

г) Уравнение реакции горения этилена:

C 2 H 4 + 3O 2 = 2CO 2 + 2H 2 O

Согласно уравнению реакции на сжигание 1 моль С 2 Н 4 расходуется 3 моль О 2 , т.е. затрачивается в три раз больший объём кислорода, чем этилена.

Кислорода для сжигания этилена требуется в три раза больше по объёму, чем этилена, а именно 60л (20 . 3 = 60).

Теперь находим общий объём кислорода, затраченный на сжигание 1м 3 газа:

V(O 2) = 250 + 700 + 40 + 60 = 1050 л.

Рассчитаем объём воздуха, содержащий 1050 л кислорода из пропорции

Ответ: 5м 3

Задача 123.
При пропускании водяного пара над раскаленным углем получается водяной газ, состоящий из равных объемов СО и Н 2 . Какой объем водяного газа (условия нормальные) может быть получен из 3,0 кг угля?
Решение:

C(к) + H 2 О(г) = СО(г) + Н 2 (г)

Согласно уравнению реакции из одного моля угля и одного моля воды образуется «водяной газ», состоящий из одного моля угарного газа и одного моля водорода. Мольная масса углерода равна 12 кг/кмоль; 1 кмолоь «водяного газа» занимает объём 44,8м 3 .

Рассчитаем объём водяного газа, образуемого из 3кг угля из пропорции:

Ответ: 11,2м 3 .

Задача 124.
Карбонат кальция разлагается при нагревании на СаО и СО 2 . Какая масса природного известняка, содержащего 90% (масс.) СаСО 3 , потребуется для получения 7,0т негашеной извести?
Решение:
Уравнение протекающей реакции:

СаСO 3 CaO + CO 2

Молекулярные массы СаСО 3 и СаО соответственно равны 100 и 56, следовательно, их мольные массы составляют 100 и 56г/моль. Согласно уравнению реакции 1 моль СаСО 3 образует 1 моль СаО. Находим теоретический выход негашёной извести из пропорции:

Находим массу природного известняка из пропорции:

Ответ: 13,9т.

Задача 125.
К раствору, содержащему 6,8г АIСl 3 , прилили раствор, содержащий 5,0г КОН. Найти массу образовавшегося осадка.
Решение:
Уравнение протекающей реакции:

АIСl 3 + 3КОН = Al(OH) 3 ↓ + 3H 2 O

Мольные массы АlCl 3 , KOH и Al(OH)3 соответственно равны 133,34; 56 и 78 г/моль. Рассчитаем количество реагирующих веществ по формуле:

Где n
Отсюда

Согласно уравнению реакции 1 моль AlCl 3 реагирует с 3 моль КОН с образованием 1 моль Al(OH) 3 , т.е. КОН должно 0,15 моль (0,05 . 3 = 0,15), чем взято по условию задачи (0,09 моль). Таким образом, КОН взят в недостатке, поэтому расчёт массы Al(OH) 3 проводим по КОН, получим:

Ответ: 2,3г

Задача 126.
Через раствор, содержащий 7,4г гидроксида кальция, пропустили 3,36л диоксида углерода, взятого при нормальных условиях. Найти массу вещества, образовавшегося в результате реакции.
Решение:
Уравнение реакции имеет вид:

Ca(OH) 2 + CO 2 = CaCO 3 ↓ + H 2 O

Молекулярные массы Са(ОН)2 и СаСО 3 соответственно равны 74 и 100, следовательно, их мольные массы составляют 74 и 100г/моль. Согласно уравнению реакции из 1 моль Са(ОН) 2 и 1 моль СО 2 образуется 1 моль СаСО 3 . Рассчитаем количество реагирующих веществ по формуле

Где n - количество вещества, моль; m(B) – масса вещества, г; M(B) – мольная масса, г/моль.

Следовательно, СО 2 взят в избытке и поэтому расчёт массы образовавшегося СаСО 3 будем проводить по Са(ОН) 2 .

m(CaCO 3) = n(CaCO 3) . M(CaCO 3) = 0,1 . 100 = 10г.

Ответ: 10г

3Сu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O

Мольные массы Cu и Cu(NO 3) 2 соответственно равны 63,55 и 187,55г/моль. Согласно уравнению реакции из 3 моль Cu образуется 3 моль Cu(NO 3) 2 . Рассчитаем массу Cu(NO 3) 2 , образующуюся при растворении 10г меди в азотной кислоте:

Находим мольную массу кристаллогидрата нитрата меди:

M[(Cu(NO 3) 2) . 3H2O] = 187,55 + (3 . 18) = 214,55г/моль.

Рассчитаем массу образовавшегося кристаллогидрата меди:

Ответ : 38г

Задача 128.
При обработке раствором гидроксида натрия 3,90г смеси алюминия с его оксидом выделялось 840 мл газа, измеренного при нормальных условиях. Определить процентный состав (по массе) исходной смеси.
Решение:
Уравнения протекающих реакций:

Следовательно, водород образуется при растворении алюминия в растворе щёлочи Согласно уравнению реакции из 2 моль Al (2 . 27 = 54г) образуется 3 моль Н 2 или 67,2л (3 . 22,4 = 67,2). Рассчитаем массу алюминия в смеси из пропорции:

Теперь находим процентное содержание алюминия в смеси по формуле:

Где(B) - массовая доля вещества (В) в процентах, %; m(B) - масса вещества (В) в смеси, г; m(смеси) - масса смеси веществ, г.

Ответ: 17,3%.

Задача 129.
5,10г порошка частично окисленного магния обработали соляной кислотой. При этом выделилось 3,74л Н 2 , измеренного при нормальных условиях. Сколько процентов магния (по массе) содержалось в образце?
Решение:
Уравнение протекающей реакции:

Mg + 2HCl = MgCl 2 + H 2

Мольная масса Mg равна 24,312г/моль, мольный объём газа равен 22,4л/моль. Согласно уравнению реакции 1 моль магния выделяет 1 моль водорода. Рассчитаем массу магния, которая растворилась в кислоте из пропорции:

Процентный состав магния в образце определяем из пропорции:

Задание. Сколько литров кислорода (н. у.) вступит в реакцию при сгорании 4,8 г магния?

Периодический закон (ПЗ) и периодическая система (ПС)

элементов Д. И. Менделеева

Открытие ПЗ и построение ПС явились вершиной развития химии в 19 в (1869 г). Д.И. Менделеев расположил все известные в то время элементы (63) в порядке возрастания их атомных масс и при этом обнаружил связь свойств химических элементов с их атомными массами, которая заключалась в том, что через определенные интервалы свойства элементов повторялись. Д. И. Менделеев сформулировал периодический закон так: Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных масс элементов.

Несмотря на всю огромную значимость такого вывода, ПЗ и ПС представляли лишь гениальное эмпирическое (экспериментальное) обобщение фактов, а их физический смысл долгое время оставался непонятным. Причина этого в том, что в 19 в совершенно отсутствовали представления о сложности строения атома.

Чаще используют три варианта ПС:

1. Короткопериодный;

2. Полудлинный (все элементы 4-го и 5-го периодов вытянуты в одну линию по 18 элементов;

3. Длиннопериодный (в одну линию вытянуты все s, p, d и f элементы.

Короткаяформа ПС состоит из 7 периодов и 8 групп.

Период – это горизонтальный ряд, который начинается щелочным металлом (кроме первого периода) и заканчивается инертным элементом (кроме седьмого периода).

Первый, второй и третий периоды состоят из одного ряда и называются малыми. Четвертый, пятый и шестой периоды состоят из двух рядов и называются большими. Всего в периодической системе 10 рядов. Верхний ряд - четный, нижний - нечетный. Четные ряды содержат только металлы и свойства элементов слева направо меняются мало. Четный ряд большого периода заканчивается тремя сходными между собой по свойствам элементами: триадами. Нечетные ряды содержат металлы и неметаллы, в них слева направо идет постепенный переход от металлических свойств к неметаллическим.

В шестом периоде послелантана La (№ 57) расположены 14 элементов со сходными свойствами(№ 58 - 71): лантаноиды. Все они реакционноспособные металлы, реагируют с водой, у них сильно выражена горизонтальная аналогия.

В седьмом периоде после актиния Ас (№89) аналогично расположены14 элементов (№90 - 103), подобных актинию: актиноиды. Ядра их атомов крайне неустойчивы, то есть являются радиоактивными.

Каждая группа состоит из двух подгрупп: главной и побочной.

Подгруппы, в которые входят элементы малых и больших периодов, называются главными (А). Подгруппы, в которые входят элементы только больших периодов, называются побочными (В). Подгруппы объединяют наиболее сходные между собой элементы.

Для элементов одной группы характерны следующие закономерности:

1. Все элементы, кроме благородных газов, образуют кислородные соединения.

2. Высшая валентность и высшая положительная степень окисления обычно соответствует номеру группы. Исключения: 1) в 8-й группе только у рутения Ru и Os валентность равна VIII; Cu +1 , Cu +2 ; O –2 ; F –1 .

3. Элементы главной подгруппы с IV по VIII группы образуют летучие соединения с водородом. Валентность их в этих соединениях равна разности между числом 8 и номером группы. Например, N находится в V-й группе и его валентность равна 8 – 5 = 3 в соединении NH 3 .

Строение атома

В XIX в. считали, что атом – неделимая частица, которая не изменяется при химических реакциях. В концеХIХ- начале XX вв. были открыты рентгеновское излучение (немецким ученым К. Рентгеном, 1895 г), радиоактивность (французским ученым А. Беккерелем, 1896), электрон (английским ученым Дж. Томсоном, 1897 г.). Масса m(е)=9,109×10 –28 г и отрицательный заряд q(e)=1,602×10 –19 Кл. Величина заряда электрона принята за единицу элементарного электрического заряда.

В 1903 г. Дж. Томсон предложил модель строения атома, согласно которой положительный заряд равномерно распределен по объему атома и нейтрализован вкрапленными в него электронами. Развивая эти представления, Э. Резерфорд в 1911г. предложил планетарную модель строения атома. По этой теории в центре атома находится положительно заряженное ядро, вокруг которого движутся электроны. Совокупность электронов в атоме называется его электронной оболочкой. В 1913 г. Английский ученый Д. Мозли обнаружил, что величина положительного заряда ядра атома равна порядковому номеру элемента в периодической системе элементов Д. И. Менделеева. Атом электронейтрален, следовательно, число электронов в электронной оболочке атома равно заряду ядра Z или порядковому номеру элемента в периодической системе .

В 1932 г. советские ученые Д. Д. Иваненко и Е. Н. Гапон и, независимо от ниx, немецкий ученый В. Гейзенберг создали протонно-нейтронную теорию строения ядра . Протон р - это частица с массой, равной 1 а. е. м.
(1,66 ×10 –24 г), и зарядом + 1. Нейтрон n – это электронейтральная частица массой, близкой к массе протона. Протоны и нейтроны называют нуклонами.

Заряд ядра атома определяется числом протонов. Следовательно, число протонов в ядре атома также равно порядковому номеру элемента в периодической системе . Общее число протонов и нейтронов называется массовым числом (А). Оно равно округленному до целого числа значению относительной атомной массы.

Задание. Какой заряд ядра и сколько электронов, протонов, нейтронов в атоме цинка?

Z=+30, p=30, e=30, n = 65–30 = 35.

Изотопы

Разновидности атомов одного элемента, обладающие одинаковыми зарядами ядер, но разными массовыми числами (одинаковым числом протонов и разным числом нейтронов), называются изотопами. Химические свойства всех изотопов одного элемента одинаковы.

Каждый изотоп характеризуется двумя величинами: массовым числом (проставляется вверху слева от химического знака) и порядковым номером (проставляется внизу слева от химического знака) и обозначается символом соответствующего элемента. Например, элемент водород имеет три изотопа. Н – протий (1 р); D ( Н) - дейтерий (1р, 1 n); T ( Н) - тритий (1 р, 2 n).

Урок посвящен продолжению изучения темы «Уравнение химической реакции». В уроке рассматриваются простейшие расчеты по уравнению химической реакции, связанные с соотношением количеств веществ, участвующих в реакции.

Тема: Первоначальные химические представления

Урок: Уравнение химической реакции

1. Соотношение количеств веществ, участвующих в реакции

Коэффициенты в уравнении реакции показывают не только число молекул каждого вещества, но и соотношение количеств веществ, участвующих в реакции. Так, по уравнению реакции: 2H2 + O2 = 2H2O – можно утверждать, что для образования определенного количества воды (например, 2 моль) необходимо столько же моль простого вещества водорода (2 моль) и в два раза меньше моль простого вещества кислорода (1 моль). Приведем примеры подобных расчетов.

2. Задача 1

ЗАДАЧА 1. Определим количество вещества кислорода, образующегося в результате разложения 4 моль воды.

АЛГОРИТМ решения задачи:

1. Составить уравнение реакции

2. Составить пропорцию, определив количества веществ по уравнению реакции и по условию задачи (обозначить неизвестное количество вещества за х моль).

3. Составить уравнение (из пропорции).

4. Решить уравнение, найти х.

Рис. 1. Оформление краткого условия и решения задачи 1

3. Задача 2 ЗАДАЧА 2. Какое количество кислорода потребуется для полного сжигания 3 моль меди? Воспользуемся алгоритмом решения задач с использованием уравнения химической реакции.

Рис. 2. Оформление краткого условия и решения задачи 2.

Внимательно изучите алгоритмы и запишите в тетрадь, решите самостоятельно предложенные задачи

I . Используя алгоритм, решите самостоятельно следующие задачи:

1. Вычислите количество вещества оксида алюминия, образовавшегося в результате взаимодействия алюминия количеством вещества 0,27 моль с достаточным количеством кислорода (4Al +3O2 =2Al2 O3 ).

2. Вычислите количество вещества оксида натрия, образовавшегося в результате взаимодействия натрия количеством вещества 2,3 моль с достаточным количеством кислорода (4Na+O2 =2Na2 O).

Алгоритм №1

Вычисление количества вещества по известному количеству вещества, участвующего в реакции.

Пример. Вычислите количество вещества кислорода, выделившегося в результате разложения воды количеством вещества 6 моль.







II. Используя алгоритм, решите самостоятельно следующие задачи:

1. Вычислите массу серы, необходимую для получения оксида серы (IV) количеством вещества 4 моль (S+O2 =SO2 ).

2. Вычислите массу лития, необходимого для получения хлорида лития количеством вещества 0,6 моль (2Li+Cl2 =2LiCl).



Алгоритм №2

Вычисление массы вещества по известному количеству другого вещества, участвующего в реакции.

Пример: Вычислите массу алюминия, необходимого для получения оксида алюминия количеством вещества 8 моль.







III. Используя алгоритм, решите самостоятельно следующие задачи:

1. Вычислите количество вещества сульфида натрия, если в реакцию с натрием вступает сера массой 12,8 г (2Na+S=Na2S).

2. Вычислите количество вещества образующейся меди, если в реакцию с водородом вступает оксид меди (II) массой 64 г (CuO + H2 = Cu + H2 O).

Внимательно изучите алгоритм и запишите в тетрадь

Алгоритм №3

Вычисление количества вещества по известной массе другого вещества, участвующего в реакции.

Пример. Вычислите количество вещества оксида меди (I), если в реакцию с кислородом вступает медь массой 19,2г.





Внимательно изучите алгоритм и запишите в тетрадь

IV. Используя алгоритм, решите самостоятельно следующие задачи:

1. Вычислите массу кислорода, необходимую для реакции с железом массой 112 г

(3Fe + 4O2 =Fe3 O4 ).

Алгоритм №4

Вычисление массы вещества по известной массе другого вещества, участвующего в реакции

Пример. Вычислите массу кислорода, необходимую для сгорания фосфора, массой 0,31г.







ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Вычислите количество вещества оксида алюминия, образовавшегося в результате взаимодействия алюминия количеством вещества 0,27 моль с достаточным количеством кислорода (4Al +3O2 =2Al2 O3 ).

2. Вычислите количество вещества оксида натрия, образовавшегося в результате взаимодействия натрия количеством вещества 2,3 моль с достаточным количеством кислорода (4Na+O2 =2Na2 O).

3. Вычислите массу серы, необходимую для получения оксида серы (IV) количеством вещества 4 моль (S+O2 =SO2 ).

4. Вычислите массу лития, необходимого для получения хлорида лития количеством вещества 0,6 моль (2Li+Cl2 =2LiCl).

5. Вычислите количество вещества сульфида натрия, если в реакцию с натрием вступает сера массой 12,8 г (2Na+S=Na2 S).

6. Вычислите количество вещества образующейся меди, если в реакцию с водородом вступает оксид меди (II) массой 64 г (CuO + H2 = Cu + H2 O).

ТРЕНАЖЁРЫ

Тренажёр №1 - Анализ уравнения химической реакции

Тренажёр №6 - Стехиометрические расчёты

Стехиометрия - количественные соотношения между вступающими в реакцию веществами.

Если реагенты вступают в химическое взаимодействие в строго определенных количествах, а в результате реакции образуются вещества, количество которых можно расчитать, то такие реакции называются стехиометрическими .

Законы стехиометрии:

Коэффициенты в химических уравнениях перед формулами химических соединений называются стехиометрическими .

Все расчёты по химическим уравнениям основаны на использовании стехиометрических коэффициентов и связаны с нахождением количеств вещества (чисел молей).

Количество вещества в уравнении реакции (число молей) = коэффициенту перед соответствующей молекулой.

N A =6,02×10 23 моль -1 .

η - отношение реальной массы продукта m p к теоретически возможной m т, выраженное в долях единицы или в процентах.

Если в условии выход продуктов реакции не указан, то в расчетах его принимают равным 100% (количественный выход).

Схема расчёта по уравнениям химических реакций:

  1. Составить уравнение химической реакции.
  2. Над химическими формулами веществ написать известные и неизвестные величины с единицами измерения.
  3. Под химическими формулами веществ с известными и неизвестными записать соответствующие значения этих величин, найденные по уравнению реакций.
  4. Составить и решить пропорцию.

Пример. Вычислить массу и количество вещества оксида магния, образовавшегося при полном сгорании 24 г магния.

Дано:

m (Mg ) = 24 г

Найти:

ν ( MgO )

m ( MgO )

Решение:

1. Составим уравнение химической реакции:

2Mg + O 2 = 2MgO.

2. Под формулами веществ укажем количество вещества (число молей), которое соответствует стехиометрическим коэффициентам:

2Mg + O 2 = 2MgO

2 моль 2 моль

3. Определим молярную массу магния:

Относительная атомная масса магния Ar (Mg) = 24.

Т.к. значение молярной массы равно относительной атомной или молекулярной массе, то M (Mg) = 24 г/моль.

4. По массе вещества, заданной в условии, вычислим количество вещества:

5. Над химической формулой оксида магния MgO , масса которого неизвестна, ставим x моль , над формулой магния Mg пишем его молярную массу:

1 моль x моль

2Mg + O 2 = 2MgO

2 моль 2 моль

По правилам решения пропорции:

Количество оксида магния ν (MgO) = 1 моль.

7. Вычислим молярную массу оксида магния:

М (Mg) =24 г/моль,

М (О) =16 г/моль.

M (MgO) = 24 + 16 = 40 г/моль.

Рассчитываем массу оксида магния:

m (MgO) = ν (MgO) ×M (MgO) = 1 моль×40 г/моль = 40 г.

Ответ: ν (MgO) = 1 моль; m (MgO) = 40 г.