E A → ⋅ B C → + E B → ⋅ C A → + E C → ⋅ A B → = 0 {\displaystyle {\overrightarrow {EA}}\cdot {\overrightarrow {BC}}+{\overrightarrow {EB}}\cdot {\overrightarrow {CA}}+{\overrightarrow {EC}}\cdot {\overrightarrow {AB}}=0}

(Для доказательства тождества следует воспользоваться формулами

A B → = E B → − E A → , B C → = E C → − E B → , C A → = E A → − E C → {\displaystyle {\overrightarrow {AB}}={\overrightarrow {EB}}-{\overrightarrow {EA}},\,{\overrightarrow {BC}}={\overrightarrow {EC}}-{\overrightarrow {EB}},\,{\overrightarrow {CA}}={\overrightarrow {EA}}-{\overrightarrow {EC}}}

В качестве точки E следует взять пересечение двух высот треугольника.)

  • Ортоцентр изогонально сопряжен центру описанной окружности .
  • Ортоцентр лежит на одной прямой с центроидом , центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник .
  • Центр описанной ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника .
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если О - центр описанной окружности ΔABC, то O H → = O A → + O B → + O C → {\displaystyle {\overrightarrow {OH}}={\overrightarrow {OA}}+{\overrightarrow {OB}}+{\overrightarrow {OC}}} ,
  • Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
  • Теорема Гамильтона . Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
  • Следствия теоремы Гамильтона :
    • Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона , имеющих равные радиусы описанных окружностей.
    • Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
  • В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном - вне треугольника; в прямоугольном - в вершине прямого угла.

Свойства высот равнобедренного треугольника

  • Если в треугольнике две высоты равны, то треугольник - равнобедренный (теорема Штейнера - Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
  • У равностороннего треугольника все три высоты равны.

Свойства оснований высот треугольника

  • Основания высот образуют так называемый ортотреугольник , обладающий собственными свойствами.
  • Описанная около ортотреугольника окружность - окружность Эйлера . На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
  • Другая формулировка последнего свойства:
    • Теорема Эйлера для окружности девяти точек . Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром , все лежат на одной окружности (на окружности девяти точек ).
  • Теорема . В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
  • Теорема . В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.

Другие свойства высот треугольника

Свойства минимальной из высот треугольника

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Основные соотношения

  • h a = b sin ⁡ γ = c sin ⁡ β , {\displaystyle h_{a}=b\sin \gamma =c\sin \beta ,}
  • h a = 2 S a , {\displaystyle h_{a}={\frac {2S}{a}},} где S {\displaystyle S} - площадь треугольника, a {\displaystyle a} - длина стороны треугольника, на которую опущена высота .
  • h a 2 = 1 2 (b 2 + c 2 − 1 2 (a 2 + (b 2 − c 2) 2 a 2)) {\displaystyle h_{a}^{2}={\frac {1}{2}}(b^{2}+c^{2}-{\frac {1}{2}}(a^{2}+{\frac {(b^{2}-c^{2})^{2}}{a^{2}}}))}
  • h a = b c 2 R , {\displaystyle h_{a}={\frac {bc}{2R}},} где b c {\displaystyle bc} - произведение боковых сторон, R − {\displaystyle R-} радиус описанной окружности
  • h a: h b: h c = 1 a: 1 b: 1 c = b c: a c: a b {\displaystyle h_{a}:h_{b}:h_{c}={\frac {1}{a}}:{\frac {1}{b}}:{\frac {1}{c}}=bc:ac:ab}
  • 1 h a + 1 h b + 1 h c = 1 r {\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{r}}} , где r {\displaystyle r} - радиус вписанной окружности .
  • S = 1 (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle S={\frac {1}{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}} , где S {\displaystyle S} - площадь треугольника.
  • a = 2 h a ⋅ (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle a={\frac {2}{h_{a}{\cdot }{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}} , a {\displaystyle a} - сторона треугольника к которой опускается высота h a {\displaystyle h_{a}} .
  • Высота равнобедренного треугольника , опущенная на основание: h c = 1 2 4 a 2 − c 2 , {\displaystyle h_{c}={\frac {1}{2}}{\sqrt {4a^{2}-c^{2}}},}
где c {\displaystyle c} - основание, a {\displaystyle a} - боковая сторона.

Теорема о высоте прямоугольного треугольника

Если высота в прямоугольном треугольнике A B C {\displaystyle ABC} длиной h {\displaystyle h} , проведённая из вершины прямого угла, делит гипотенузу длиной c {\displaystyle c} на отрезки m {\displaystyle m} и n {\displaystyle n} , соответствующие катетам b {\displaystyle b} и a {\displaystyle a} , то верны следующие равенства.

Треугольник – многоугольник с тремя сторонами, или замкнутая ломаная линия с тремя звеньями, или фигура, образованная тремя отрезками, соединяющими три точки, не лежащие на одной прямой (см. рис. 1).

Основные элементы треугольника abc

Вершины – точки A, B, и C;

Стороны – отрезки a = BC, b = AC и c = AB, соединяющие вершины;

Углы – α , β, γ образованные тремя парами сторон. Углы часто обозначают так же, как и вершины, – буквами A, B и C.

Угол, образованный сторонами треугольника и лежащий в его внутренней области, называется внутренним углом, а смежный к нему является смежным углом треугольника (2, стр. 534).

Высоты, медианы, биссектрисы и средние линии треугольника

Кроме основных элементов в треугольнике рассматривают и другие отрезки, обладающие интересными свойствами: высоты, медианы, биссектрисы исредние линии.

Высота

Высоты треугольника – это перпендикуляры, опущенные из вершин треугольника на противоположные стороны.

Для построения высоты необходимо выполнить следующие действия:

1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);

2) из вершины, лежащей напротив проведенной прямой, провести отрезок из точки к этой прямой, составляющий с ней угол 90 градусов.

Точка пересечения высоты со стороной треугольника называется основанием высоты (см. рис. 2).

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному треугольнику.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

    Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон.

    Три высоты в остроугольном треугольнике пересекаются в одной точке и эту точку называют ортоцентром треугольника.

Медиана

Медианы (от лат. mediana– «средняя») – это отрезки, соединяющие вершины треугольника с серединами противолежащих сторон (см. рис. 3).

Для построения медианы необходимо выполнить следующие действия:

1) найти середину стороны;

2)соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектрисами (от лат. bis – дважды» и seko – рассекаю) называют заключенные внутри треугольника отрезки прямых, которые делят пополам его углы (см. рис. 4).

Для построения биссектрисы необходимо выполнить следующие действия:

1) построить луч, выходящий из вершины угла и делящий его на две равные части (биссектрису угла);

2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3) выделить отрезок, соединяющий вершину треугольника с точкой пересечения на противоположной стороне.

Свойства биссектрис треугольника

    Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

    Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

    Биссектрисы внутреннего и внешнего углов перпендикулярны.

    Если биссектриса внешнего угла треугольника пересекает продолжение противолежащей стороны, то ADBD=ACBC.

    Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка - центр одной из трех вневписанных окружностей этого треугольника.

    Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

    Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.

Треугольники.

Основные понятия.

Треугольник - это фигура, состоящая из трех отрезков и трех точек, не лежащих на одной прямой.

Отрезки называются сторонами , а точки - вершинами .

Сумма углов треугольника равна 180 º .

Высота треугольника.

Высота треугольника - это перпендикуляр, проведенный из вершины к противолежащей стороне.

В остроугольном треугольнике высота содержится внутри треугольника (рис.1).

В прямоугольном треугольнике катеты являются высотами треугольника (рис.2).

В тупоугольном треугольнике высота проходит вне треугольника (рис.3).

Свойства высоты треугольника:

Биссектриса треугольника.

Биссектриса треугольника - это отрезок, который делит угол вершины пополам и соединяет вершину с точкой на противолежащей стороне (рис.5).

Свойства биссектрисы:


Медиана треугольника.

Медиана треугольника - это отрезок, соединяющий вершину с серединой противолежащей стороны (рис.9а).


Длину медианы можно вычислить по формуле:

2b 2 + 2c 2 - a 2
m a 2 = ——————
4

где m a - медиана, проведенная к стороне а .

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы:

c
m c = —
2

где m c - медиана, проведенная к гипотенузе c (рис.9в)

Медианы треугольника пересекаются в одной точке (в центре масс треугольника) и делятся этой точкой в соотношении 2:1, отсчитывая от вершины. То есть отрезок от вершины к центру в два раза больше отрезка от центра к стороне треугольника (рис.9с).

Три медианы треугольника делят его на шесть равновеликих треугольников.

Средняя линия треугольника.

Средняя линия треугольника - это отрезок, соединяющий середины двух его сторон (рис.10).

Средняя линия треугольника параллельна третьей стороне и равна ее половине

Внешний угол треугольника.

Внешний угол треугольника равен сумме двух несмежных внутренних углов (рис.11).

Внешний угол треугольника больше любого несмежного угла.

Прямоугольный треугольник.

Прямоугольный треугольник - это треугольник, у которого есть прямой угол (рис.12).

Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой .

Две другие стороны называются катетами .


Пропорциональные отрезки в прямоугольном треугольнике.

1) В прямоугольном треугольнике высота, проведенная из прямого угла, образует три подобных треугольника: ABC, ACH и HCB (рис.14а). Соответственно, углы, образуемые высотой, равны углам А и В.

Рис.14а

Равнобедренный треугольник.

Равнобедренный треугольник - это треугольник, у которого две стороны равны (рис.13).

Эти равные стороны называются боковыми сторонами , а третья - основанием треугольника.

В равнобедренном треугольнике углы при основании равны. (В нашем треугольнике угол А равен углу C).

В равнобедренном треугольнике медиана, проведенная к основанию, является одновременно и биссектрисой, и высотой треугольника.

Равносторонний треугольник.

Равносторонний треугольник - это треугольник, у которого все стороны равны (рис.14).

Свойства равностороннего треугольника:

Замечательные свойства треугольников.

У треугольников есть оригинальные свойства, которые помогут вам успешно решать задачи, связанные с этими фигурами. Некоторые из этих свойств изложены выше. Но повторяем их еще раз, добавив к ним несколько других замечательных особенностей:

1) В прямоугольном треугольнике с углами 90º, 30º и 60º катет b , лежащий напротив угла в 30º, равен половине гипотенузы. А катет a больше катета b в √3 раз (рис.15а ). К примеру, если катет b равен 5, то гипотенуза c обязательно равна 10, а катет а равен 5√3.

2) В прямоугольном равнобедренном треугольнике с углами 90º, 45º и 45º гипотенуза в √2 раз больше катета (рис.15b ). К примеру, если катеты равны 5, то гипотенуза равна 5√2.

3) Средняя линия треугольника равна половине параллельной стороны (рис.15с ). К примеру, если сторона треугольника равна 10, то параллельная ей средняя линия равна 5.

4) В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы (рис.9в): m c = с/2.

5) Медианы треугольника, пересекаясь в одной точке, делятся этой точкой в соотношении 2:1. То есть отрезок от вершины к точке пересечения медиан в два раза больше отрезка от точки пересечения медиан к стороне треугольника (рис.9c)

6) В прямоугольном треугольнике середина гипотенузы является центром описанной окружности (рис.15d ).


Признаки равенства треугольников .

Первый признак равенства : если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Второй признак равенства : если сторона и прилежащие к ней углы одного треугольника равны стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

Третий признак равенства : если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Неравенство треугольника.

В любом треугольнике каждая сторона меньше суммы двух других сторон.

Теорема Пифагора.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

c 2 = a 2 + b 2 .

Площадь треугольника.

1) Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне:

ah
S = ——
2

2) Площадь треугольника равна половине произведения двух любых его сторон на синус угла между ними:

1
S = — AB · AC · sin A
2

Треугольник, описанный около окружности.

Окружность называется вписанной в треугольник, если она касается всех его сторон (рис.16а ).


Треугольник, вписанный в окружность.

Треугольник называется вписанным в окружность, если он касается ее всеми вершинами (рис.17a ).

Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника (рис.18).

Синус острого угла x противолежащего катета к гипотенузе.
Обозначается так: sin x .

Косинус острого угла x прямоугольного треугольника - это отношение прилежащего катета к гипотенузе.
Обозначается так: cos x .

Тангенс острого угла x - это отношение противолежащего катета к прилежащему катету.
Обозначается так: tg x .

Котангенс острого угла x - это отношение прилежащего катета к противолежащему.
Обозначается так: ctg x .

Правила:

Катет, противолежащий углу x , равен произведению гипотенузы на sin x :

b = c · sin x

Катет, прилежащий к углу x , равен произведению гипотенузы на cos x :

a = c · cos x

Катет, противоположный углу x , равен произведению второго катета на tg x :

b = a · tg x

Катет, прилежащий к углу x , равен произведению второго катета на ctg x :

a = b · ctg x .


Для любого острого угла x :

sin (90° - x ) = cos x

cos (90° - x ) = sin x


При решении геометрических задач полезно следовать такому алгоритму. Во время чтения условия задачи необходимо

  • Сделать чертеж. Чертеж должен максимально соответствовать условию задачи, так его основная задача помочь найти ход решения
  • Нанести все данные из условия задачи на чертеж
  • Выписать все геометрические понятия, которые встречаются в задаче
  • Вспомнить все теоремы, которые относятся к этим понятию
  • Нанести на чертеж все соотношения между элементами геометрической фигуры, которые следуют из этих теорем

Например, если в задаче встречается слова биссектриса угла треугольника, нужно вспомнить определение и свойства биссектрисы и обозначить на чертеже равные или пропорциональные отрезки и углы.

В этой статье вы найдете основные свойства треугольника, которые необходимо знать для успешного решения задач.

ТРЕУГОЛЬНИК.

Площадь треугольника.

1. ,

здесь - произвольная сторона треугольника, - высота, опущенная на эту сторону.


2. ,

здесь и - произвольные стороны треугольника, - угол между этими сторонами:

3. Формула Герона:

Здесь - длины сторон треугольника, - полупериметр треугольника,

4. ,

здесь - полупериметр треугольника, - радиус вписанной окружности.


Пусть - длины отрезков касательных.


Тогда формулу Герона можно записать в таком виде:

5.

6. ,

здесь - длины сторон треугольника, - радиус описанной окружности.

Если на стороне треугольника взята точка, которая делит эту сторону в отношении m:n, то отрезок, соединяющий эту точку с вершиной противолежащего угла делит треугольник на два треугольника, площади которых относятся как m:n:


Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Медиана треугольника

Это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.


Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший - радиусу описанной окружности.

Радиус описанной окружности в два раза больше радиуса вписанной окружности: R=2r

Длина медианы произвольного треугольника

,

здесь - медиана, проведенная к стороне , - длины сторон треугольника.

Биссектриса треугольника

Это отрезок биссектрисы любого угла треугольника, соединяющий вершину этого угла с противоположной стороной.

Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам:

Биссектрисы треугольника пересекаются в одной точке, которая является центром вписанной окружности.

Все точки биссектрисы угла равноудалены от сторон угла.

Высота треугольника

Это отрезок перпендикуляра, опущенный из вершины треугольника на противоположную сторону, или ее продолжение. В тупоугольном треугольнике высота, проведенная из вершины острого угла лежит вне треугольника.


Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Чтобы найти высоту треугольника , проведенную к стороне , нужно любым доступным способом найти его площадь, а затем воспользоваться формулой:

Центр окружности, описанной около треугольника , лежит в точке пересечения серединных перпендикуляров, проведенных к сторонам треугольника.

Радиус описанной окружности треугольника можно найти по таким формулам:

Здесь - длины сторон треугольника, - площадь треугольника.

,

где - длина стороны треугольника, - противолежащий угол. (Эта формула вытекает из теоремы синусов).

Неравенство треугольника

Каждая сторона треугольника меньше суммы и больше разности двух других.

Сумма длин любых двух сторон всегда больше длины третьей стороны:

Напротив большей стороны лежит больший угол; напротив большего угла лежит большая сторона:

Если , то и наоборот.

Теорема синусов:

стороны треугольника пропорциональны синусам противолежащих углов:


Теорема косинусов:

квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Прямоугольный треугольник

- это треугольник, один из углов которого равен 90°.

Сумма острых углов прямоугольного треугольника равна 90°.

Гипотенуза - это сторона, которая лежит против угла 90°. Гипотенуза является наибольшей стороной.

Теорема Пифагора:

квадрат гипотенузы равен сумме квадратов катетов :

Радиус окружности, вписанной в прямоугольный треугольник, равен

,

здесь - радиус вписанной окружности, - катеты, - гипотенуза:


Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы:


Медиана прямоугольного треугольника, проведенная к гипотенузе , равна половине гипотенузы.

Определение синуса, косинуса, тангенса и котангенса прямоугольного треугольника смотрите

Соотношение элементов в прямоугольном треугольнике:

Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу:

Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:


Катет, лежащий против угла равен половине гипотенузы:

Равнобедренный треугольник.

Биссектриса равнобедренного треугольника, проведенная к основанию является медианой и высотой.

В равнобедренном треугольнике углы при основании равны.

Угол при вершине.

И - боковые стороны,

И - углы при основании.

Высота, биссектриса и медиана.

Внимание! Высота, биссектриса и медиана, проведенные к боковой стороне не совпадают.

Правильный треугольник

(или равносторонний треугольник ) - это треугольник, все стороны и углы которого равны между собой.

Площадь правильного треугольника равна

где - длина стороны треугольника.

Центр окружности, вписанной в правильный треугольник , совпадает с центром окружности, описанной около правильного треугольника и лежит в точке пересечения медиан.

Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший - радиусу описанной окружности.

Если один из углов равнобедренного треугольника равен 60°, то этот треугольник правильный.

Средняя линия треугольника

Это отрезок, соединяющий середины двух сторон.

На рисунке DE - средняя линия треугольника ABC.

Средняя линия треугольника параллельна третьей стороне и равна ее половине: DE||AC, AC=2DE

Внешний угол треугольника

Это угол, смежный какому либо углу треугольника.

Внешний угол треугольника равен сумме двух углов, не смежных с ним.


Тригонометрические функции внешнего угла:

Признаки равенства треугольников:

1 . Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.


2 . Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.


3 Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.


Важно: поскольку в прямоугольном треугольнике два угла заведомо равны, то для равенства двух прямоугольных треугольников требуется равенство всего двух элементов: двух сторон, или стороны и острого угла.

Признаки подобия треугольников:

1 . Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами равны, то эти треугольники подобны.

2 . Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники подобны.

3 . Если два угла одного треугольника равны двум углам другого треугольника, то эти треугольники подобны.

Важно: в подобных треугольниках сходственные стороны лежат против равных углов.

Теорема Менелая

Пусть прямая пересекает треугольник , причем – точка ее пересечения со стороной , – точка ее пересечения со стороной , и – точка ее пересечения с продолжением стороны . Тогда

Урок содержит описание свойств и формулы нахождения высоты треугольника, а также примеры решения задач. Если Вы не нашли решение подходящей задачи - пишите про это на форуме . Наверняка, курс будет дополнен.

ВЫСОТА ТРЕУГОЛЬНИКА

Высота треугольника – опущенный из вершины треугольника перпендикуляр, проведенный на противолежащую вершине сторону или на ее продолжение.

Свойства высоты треугольника:

  • Если в треугольнике две высоты равны, то такой треугольник - равнобедренный
  • В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному
  • В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащих на двух сторонах, непараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины этой стороны всегда можно провести окружность
  • В остроугольном треугольнике две его высоты отсекают от него подобные треугольники
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника

Ортоцентр треугольника

Все три высоты треугольника (проведенные из трех вершин) пересекаются в одной точке, которая называется ортоцентром . Для того, чтобы найти точку пересечения высот, достаточно провести две высоты (две прямые пересекаются только в одной точке).

Расположение ортоцентра (точка О) определяется видом треугольника.

У остроугольного треугольника точка пересечения высот находится в плоскости треугольника. (Рис.1).

У прямоугольного треугольника точка пересечения высот совпадает с вершиной прямого угла (Рис.2).

У тупоугольного треугольника точка пересечения высот находится за плоскостью треугольника (Рис.3).

У равнобедренного треугольника медиана, биссектриса и высота, проведенные к основанию треугольника, совпадают.

У равностороннего треугольника все три «замечательные» линии (высота, биссектриса и медиана) совпадают и три «замечательных» точки (точки ортоцентра, центра тяжести и центра вписанной и описанной окружностей) находятся в одной точке пересечения «замечательных» линий, т.е. тоже совпадают.

ВИСОТА ТРИКУТНИКА

Висота трикутника - опущений з вершини трикутника перпендикуляр, проведений на протилежну вершині бік або на її продовження.

Всі три висоти трикутника (проведені з трьох вершин) перетинаються в одній точці, яка називається ортоцентром. Для того, щоб знайти точку перетину висот, досить провести дві висоти (дві прямі перетинаються тільки в одній точці).

Розміщення ортоцентра (точка О) визначається видом трикутника.

У гострокутного трикутника точка перетину висот знаходиться в площині трикутника. (Мал.1).

У прямокутного трикутника точка перетину висот збігається з вершиною прямого кута (Мал.2).

У тупоугольного трикутника точка перетину висот знаходиться за площиною трикутника (Мал.3).

У рівнобедреного трикутника медіана, бісектриса і висота, проведені до основи трикутника, збігаються.

У рівностороннього трикутника всі три «помітні» лінії (висота, бісектриса і медіана) збігаються і три «помітні» точки (точки ортоцентра, центру ваги і центру вписаного і описаного кіл) знаходяться в одній точці перетину «помітних» ліній, тобто теж збігаються.

Формулы нахождения высоты треугольника


Рисунок приведен для облегчения восприятия формул нахождения высоты треугольника. Общее правило - длина стороны обозначена маленькой буквой, лежащей напротив соответствующего угла. То есть сторона a лежит напротив угла A.
Высота в формулах обозначается буквой h, нижний индекс которой соответствует стороне, на которую она опущена.

Другие обозначения:
a,b,c - длины сторон треугольника
h a - высота треугольника, проведенная к стороне a из противолежащего угла
h b - высота, проведенная к стороне b
h c - высота, проведенная к стороне c
R - радиус описанной окружности
r - радиус вписанной окружности


Пояснения к формулам.
Высота треугольника равна произведению длины стороны, прилежащей к углу, из которой опущена эта высота на синус угла между этой стороной и стороной, на которую такая высота опущена (Формула 1)
Высота треугольника равна частному от деления удвоенной величины площади треугольника на длину стороны, к которой опущена эта высота (Формула 2)
Высота треугольника равна частному от деления произведения сторон, прилежащих к углу, из которого опущена эта высота, на удвоенный радиус описанной вокруг него окружности (Формула 4).
Высоты сторон в треугольнике соотносятся между собой в той же самой пропорции, как соотносятся между собой обратные пропорции длин сторон этого же треугольника, а также в той же самой пропорции между собой относятся произведения пар сторон треугольника, которые имеют общий угол (Формула 5).
Сумма обратных значений высот треугольника равна обратному значению радиуса вписанной в такой треугольник окружности (Формула 6)
Площадь треугольника можно найти через длины высот этого треугольника (Формула 7)
Длину стороны треугольника, на которую опущена высота, можно найти через применение формул 7 и 2.

Задача на .

В прямоугольном треугольнике ABC (угол C = 90 0) проведена высота CD. Определите CD, если AD = 9 см, BD = 16 см

Решение .

Треугольники ABC, ACD и CBD подобны между собой. Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).

Прямоугольные треугольники - единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.

Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)

Треугольники ABC и CBD подобны. Значит:

AD/DC = DC/BD, то есть

Задача на применение теоремы Пифагора.

Треугольник ABC является прямоугольным. При этом C-прямой угол. Из него проведена высота CD=6см. Разность отрезков BD-AD=5 см.

Найти: Стороны треугольника ABC.

Решение .

1.Составим систему уравнений согласно теореме Пифагора

CD 2 +BD 2 =BC 2

CD 2 +AD 2 =AC 2

поскольку CD=6

Поскольку BD-AD=5, то

BD = AD+5, тогда система уравнений принимает вид

36+(AD+5) 2 =BC 2

Сложим первое и второе уравнение. Поскольку левая часть прибавляется к левой, а правая часть к правой - равенство не будет нарушено. Получим:

36+36+(AD+5) 2 +AD 2 =AC 2 +BC 2

72+(AD+5) 2 +AD 2 =AC 2 +BC 2

2. Теперь, взглянув на первоначальный чертеж треугольника, по той же самой теореме Пифагора, должно выполняться равенство:

AC 2 +BC 2 =AB 2

Поскольку AB=BD+AD, уравнение примет вид:

AC 2 +BC 2 =(AD+BD) 2

Поскольку BD-AD=5, то BD = AD+5, тогда

AC 2 +BC 2 =(AD+AD+5) 2

3. Теперь взглянем на результаты, полученные нами при решении в первой и второй части решения. А именно:

72+(AD+5) 2 +AD 2 =AC 2 +BC 2

AC 2 +BC 2 =(AD+AD+5) 2

Они имеют общую часть AC 2 +BC 2 . Таким образом, приравняем их друг к другу.

72+(AD+5) 2 +AD 2 =(AD+AD+5) 2

72+AD 2 +10AD+25+AD 2 =4AD 2 +20AD+25

2AD 2 -10AD+72=0

В полученном квадратном уравнении дискриминант равен D=676, соответственно, корни уравнения равны:

Поскольку длина отрезка не может быть отрицательной, отбрасываем первый корень.

Соответственно

AB = BD + AD = 4 + 9 = 13

По теореме Пифагора находим остальные стороны треугольника:

AC = корень из (52)