Лекция №5

Вопрос №1

Обзор воспроизводящих устройств с плоскими экранами

До настоящего времени в подавляющем большинстве серийно выпускаемых телевизоров в качестве устройств отображения цветной телевизионной информации использовали масочные кинескопы. Однако им присущи серьезные недостатки. Главный из них  значительная масса, громоздкость и сложность в изготовлении.

Конкурентами кинескопов можно назвать устройства отображения в виде плоских панелей. Основные принципы, заложенные в основу их функционирования, известны давно, и, как показала практика, плоские панели долгое время не обеспечивали должного качества изображения. Между тем, их стоимость весьма высока. В последние годы благодаря многочисленным исследованиям и совершенствованию технологий положение дел резко изменилось.

В настоящее время известно несколько типов плоских панелей: газоразрядные, жидкокристаллические, вакуумно-люминисцентные, полупроводниковые (на светодиодах). Они обладают преимуществами по сравнению с масочными кинескопами не только по ряду технических параметров, но и по возможностям серийного производства. В них используют более дешевые материалы (например, жидкие кристаллы изготавливают из отходов мясопереработки), сокращается применение дорогих редкоземельных люминофоров, не требуется дорогой высокоточный металлопрокат для масок, медный провод для отклоняющих систем, громоздкое и экологически вредное стекольное производство для изготовления колб. Срок службы панелей больше, чем у масочных кинескопов.

Но существенным недостатком плоских панелей, сдерживающим их применение в бытовой технике, по прежнему остается высокая стоимость самого процесса их изготовления.

С конца 80-х годов широкое распространение получили жидкокристаллические (ЖК) панели, используемые в качестве мониторов портативных компьютеров. К сожалению, с ростом диагонали экрана стоимость таких панелей резко возрастает. К недостаткам первых ЖК панелей следует отнести также их инерционность, нелинейность модуляционной характеристики и ограниченный угол для наблюдения.

Параллельно с жидкокристаллическими панелями получила бурное развитие технология газоразрядных панелей. Их разработка началась в начале 90-х годов. Японская фирма Fujitsu, начиная с 1993 года, выпускает газоразрядные панели с диагоналями 40 см и более. К работам подключились также фирмы Sony и Nec.

    Плазменные панели

Принцип действия плазменной панели (плазменной дисплейной панели PDP) осно­ван на свечении люминофоров экрана под действием ультрафиолето­вых лучей, возникающих при электрическом разряде в плазме (разре­женном газе).

Конструктивно плазменная панель представляет собой две стек­лянные пластины, на которые нанесены полупрозрачные электроды (шины) для коммутации строк (на лицевом стекле) и столбцов изоб­ражения (на заднем стекле, являющемся подложкой) (рис 5.1). На внутренней поверхности передней прозрачной стеклянной пластины напротив каждого подпикселя расположены два тонкопленочных электрода: электрод сканирования и электрод подсветки. На внешней поверхности задней стеклянной пластины поперек всех пикселов расположен электрод адресации . Таким образом, образуется прямоугольная матрица, ячейки которой находятся на пе­ресечении электродов строк и столбцов. На стекле–подложке сфор­мирован специальный профиль в виде стеклянных ребер, изолирую­щих соседние ячейки друг от друга. На внутренней поверхности стек­ла подложки нанесены чередующиеся полоски люминофоров первичных цветов R , G , В, образующих триады. В процессе изготов­ления такой панели из внутреннего объема между стеклянными плас­тинами откачивается воздух, этот объем заполняется разреженным газом (неон, ксенон, гелий, аргон или их смесь), являющимся рабочим «телом» при работе, после чего панель герметизируют.

Рисунок 5.1 – Конструкция плазменной панели

Плазменная панель работает следующим образом. С помощью внешних устройств «развертки» на электроды строк и столбцов мат­рицы подаются управляющие напряжения. Под действием напряже­ния между инициированными строчной и столбцовой шинами в соот­ветствующей ячейке матрицы происходит электрический разряд в газе через образующуюся при этом плазму (ионизированный газ). Этот разряд вызывает мощное ультрафиолетовое излучение, которое за­ставляет светиться находящийся в данной ячейке люминофор. Так как существуют разделительные «барьеры» между соседними ячейка­ми, электрический разряд локализуется в пределах одной отдельно взятой и не оказывает воздействия на соседние ячейки. А чтобы еще «спой» ультрафиолет не вызвал свечения «чужого» люминофора, на боковые поверхности разделительных ребер наносят специальное по­глощающее ультрафиолет покрытие.

Работа плазменной панели состоит из трех этапов (рис 5.2):

    инициализация , в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионов газовой среды, на второй ступени - разряд в газе, а на третьей - завершение упорядочивания.

    адресация , в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.

    подсветка , в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация - адресация - подсветка» образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит емкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее (рис. 5.3).

Рисунок 5.2 – Иллюстрация этапов работы плазменной панели


Рисунок 5.3 – Иллюстрация работы одного подпикселя плазменной панели

Проведем анализ основных технических и потребительских характеристик плазменных панелей

Диагональ, разрешение

Диагонали плазменных панелей начинаются с 32-дюймов и заканчиваются на 103-х. Из всего этого диапазона, как уже было сказано выше, в России пока лучше всего продаются 42-дюймовые панели с разрешением 853x480 точек. Это разрешение называется EDTV (Extended Definition Television) и подразумевает под собой "телевидение повышенной чёткости". Такого телевизора будет достаточно для комфортного времяпрепровождения, поскольку в России пока не существует бесплатного телевидения высокой чёткости (High Definition TV - HDTV). Однако HDTV-телевизоры, как правило, технически более совершенны, лучше обрабатывают сигнал и даже способны "подтягивать" его до уровня HDTV. К тому же, в магазинах уже можно купить фильмы, записанные в формате HD DVD. Выбирая HDTV-телевизор, обратите внимание на формат поддерживаемого сигнала. Самый распространённый - 1080i, то есть, 1080 строк с чересстрочным чередованием. Чересстрочное чередование принято считать не очень хорошим, поскольку будут заметны зубчики по краям объектов, но этот недостаток нивелируется высоким разрешением. Поддержка более совершенного формата 1080p с прогрессивной развёрткой пока встречается только на достаточно дорогих телевизорах, начиная с девятого поколения. Существует также альтернативный формат 1080i - это 720p с меньшим разрешением, но зато с прогрессивной развёрткой. На глаз различие между двумя картинками найти будет сложно, так что при прочих равных 1080i предпочтительнее. Впрочем, большое количество телевизоров одновременно поддерживают и 720p, и 1080i.

Выбирая диагональ, в первую очередь имейте в виду – чем она больше, тем дальше от телевизора должен находиться наблюдатель (примерно на расстоянии 5 высот экрана). Так в случае 42-дюймовой панели наблюдатель должен быть удалён от неё на расстояние не менее трёх метров. В противном случае будет достаточно сильно заметна дискретность структуры изображения из-за относительно большого размера пикселя плазменной панели.

Соотношение сторон (формат изображения) Все плазменные телевизоры имеют панели с соотношением сторон 16:9. Стандартная телевизионная картинка 4:3 на таком экране будет смотреться нормально, просто неиспользуемая площадь экрана по бокам изображения будет залита чёрным или серым, если телевизор позволяет менять цвет заливки. Телевизор может иметь функции растяжения изображения на весь экран, но в результате этой операции, как правило, происходит незначительное искажение изображения. В формате 16:9 в России пока вещает только ограниченное количество тестовых цифровых каналов.. По умолчанию такое соотношение сторон используется только в HDTV. Яркость

Существуют две характеристики панели, связанные с яркостью, - это яркость панели и яркость всего телевизора. Яркость панели нельзя оценить на готовом продукте, потому что перед ней всегда стоит светофильтр. Яркость же телевизора - это наблюдаемая яркость экрана после прохождения света через фильтр. Фактическая яркость телевизора никогда не превышает половины яркости панели. Однако в характеристиках телевизора указывается изначальная яркость, которую вы никогда не увидите. Это первый маркетинговый трюк производителя. Ещё одна особенность данных, указываемых в спецификациях, связана с методом их получения. В целях энергосбережения и защиты панели от перегрузки её яркость в расчёте на точку уменьшается пропорционально увеличению суммарной площади засветки. То есть если вы видите в характеристиках значение яркости 3000 кд/м2, знайте - она получается только при небольшой засветке, например, когда на чёрном фоне отображается несколько белых букв. Если инвертировать эту картинку, мы получим уже, например, 300 кд/м2. Контрастность

С этим показателем также связаны две характеристики: контрастность при отсутствии окружающего света и в присутствии. Значение, указываемое в большинстве спецификаций, - это контрастность, замеренная при отсутствии фонового освещения. Таким образом, в зависимости от освещения, контрастность может изменяться с 3000:1 до 100:1. Интерфейсные разъёмы

Подавляющее число плазменных телевизоров имеет, как минимум, следующие разъемы: SCART, VGA, S-Video, компонентный видеоинтерфейс, а также обычные аналоговые аудиовходы и выходы. Рассмотрим эти и другие разъёмы подробнее. Через SCART одновременно передаются аналоговый видеосигнал и стереозвук. Через HDMI можно передавать HD-сигнал в разрешении 1080p вместе с восьмиканальным звуком. Благодаря высокой пропускной способности и миниатюрности разъёма, интерфейс HDMI поддерживают уже многие видеокамеры и DVD-плееры. А компания Panasonic поставляет со своими PDP пульт с функцией HDAVI Control, позволяющей управлять не только телевизором, но и другой техникой, подключённой к нему через HDMI. VGA - это обычный компьютерный аналоговый разъём. Через него к PDP можно подключить компьютер. DVI-I - цифровой интерфейс для подключения всё того же компьютера. Однако встречается и другая техника, работающая через DVI-I. S-Video - чаще всего используется для подключения DVD-проигрывателей, игровых приставок и, в редких случаях, компьютера. Обеспечивает хорошее качество изображения. Компонентный видеоинтерфейс - интерфейс для передачи аналогового сигнала, когда каждая его составляющая идёт по отдельному кабелю. Благодаря этому компонентный сигнал - самый качественный их всех аналоговых. Для передачи звука используются аналогичные RCA-разъемы и кабели - каждый канал передается по своему проводу. Композитный видеоинтерфейс (на одном разъёме RCA) использует один кабель и, как результат, - возможна потеря цветности и чёткости изображения. Энергопотребление

Энергопотребление плазменного телевизора меняется в зависимости от отображаемой картинки. Уровень, указываемый в спецификации, отражает максимальное значение. Так, например, 42-х дюймовая плазменная панель при полностью белом экране будет потреблять 280 Вт, а при полностью чёрном - 160 Вт.

Основные достоинства и недостатки плазменных панелей

Достоинства

Во-первых, качество изображения плазменных дисплеев считается эталонным, хотя лишь совсем недавно была окончательно решена "проблема красного цвета", который в первых моделях больше походил на морковный. Кроме этого, плазменные панели выгодно отличаются от своих конкурентов высокой яркостью и контрастностью изображения: их яркость достигает 900 кд/м2 а контрастность - до 3000: 1, тогда как у классических ЭЛТ-мониторов эти параметры составляют соответственно 350 кд/м2 и 200: 1. Также необходимо отметить, что высокая четкость изображения PDP сохраняется на всей рабочей поверхности экрана. Во-вторых, плазменные панели имеют малое время отклика, что позволяет без проблем использовать PDP не только в качестве средств отображения информации, но и в качестве телевизоров и даже, при подключении к компьютеру, играть в современные динамичные игры. Важно отметить, что плазменные панели лишены такого существенного недостатка ЖК-мониторов, как значительное ухудшение качества изображения на экране при больших углах просмотра. В-третьих, в плазменных панелях (впрочем, как и в жидкокристаллических) принципиально отсутствуют проблемы геометрических искажений изображения и сведения лучей, являющихся существенным недостатком ЭЛТ-мониторов. В-четвертых, имея самую большую площадь экрана среди всех современных устройств отображения визуальной информации, плазменные панели исключительно компактны, особенно в толщину. Толщина типичной панели с размером экрана в один метр обычно не превышает 10-15 сантиметров, а масса составляет всего 35-40 килограммов.

В-пятых, плазменные панели достаточно надежны. Заявленный срок службы современных PDP в 60 тыс. ч предполагает, что за все это время (примерно 6,7 лет непрерывной работы) яркость экрана уменьшится вдвое против начальной. В-шестых, плазменные панели гораздо безопаснее телевизоров с кинескопом. Они не создают магнитных и электрических полей, которые оказывают вредное влияние на человека и, кроме этого, не создают такое неудобство, как постоянное скопление пыли на поверхности экрана вследствие его электризации. В-седьмых, PDP и сами практически не подвержены воздействию внешних магнитных и электрических полей, что позволяет без проблем использовать их в составе "домашнего кинотеатра" совместно с мощными высококачественными акустическими системами, далеко не все из которых имеют экранированные головки громкоговорителей. Недостатки

В первую очередь, это относительно низкая по сравнению с ЖК-панелями разрешающая способность изображения, обусловленная большим размером элемента изображения. Но, учитывая тот факт, что оптимальное расстояние от монитора до зрителя должно быть порядка 5 его высот, то понятно, что наблюдаемая на маленьком расстоянии зернистость изображения просто исчезает на большом расстоянии.

Также довольно существенным недостатком плазменной панели является высокая потребляемая мощность, быстро возрастающая при увеличении диагонали панели. Этот факт приводит не только к увеличению эксплуатационных затрат, но высокое энергопотребление серьезно ограничивает круг применения PDP, к примеру, делает невозможным использование таких мониторов, например, в портативных компьютерах. Но даже если решить проблему с источником питания, изготавливать плазменные матрицы с диагональю менее тридцати дюймов все равно пока еще не выгодно экономически.

    Жидкокристаллические панели

Жидкокристаллические панели (ЖК панели)  это светоклапанное устройство, модулирующее световой поток от внешнего источника света. В жидкокристаллических панелях (ЖКпанелях) используется способность аморфного вещества изме­нять свои оптические свойства в электрическом поле. Существуют ЖКпанели просветного и отражательного типов. С тыльной стороны ЖК–панель просветного типа освещается равномерным световым потоком. Под действием напряжения между инициированными строчной и столбцовой шинами в соответствую­щей ячейке матрицы изменяется оптическая прозрачность амфорного вещества. Световой поток, проходя через ЖК–матрицу с тремя типа­ми цветовых ячеек RGB , модулируется по яркости и по цвету. Таким образом, на экране ЖКпанели синтезируется цветное изображение.

В настоящее время наибольшее распространение ЖК–панели по­лучили в компьютерной технике в качестве мониторов, а также телевизорах. Жидкокристаллические панели в десятки раз экономичнее плазменных. К достоинствам ЖК–панелей следует отнести также высокую технологичность и относительно низкую сто­имость.

Принцип работы жидкокристаллических матриц основывается на свойстве молекул жидкокристаллического вещества менять пространственную ориентацию под воздействием электрического поля и оказывать поляризующий эффект на световые лучи. В многослойной структуре матрицы, представляющей собой прямоугольный массив множества отдельно управляемых элементов (пикселов), слой жидких кристаллов помещается между стеклянными пластинами, на поверхности которых нанесены бороздки. Благодаря им, во всех элементах матрицы удается сориентировать молекулы идентичным образом, причем, вследствие взаимно перпендикулярного расположения бороздок двух пластин, ориентация молекул меняется по мере удаления от одной из них и приближения к другой на 90 градусов (рис 5.4).

Рисунок 5.4 – Иллюстрация принципа работы ЖК-панели

Пропущенный через такой слой жидкокристаллического вещества поляризованный свет (см. рис.) также меняет плоскость поляризации на 90. Поэтому структура, в которую добавлены входной и выходной поляризационные фильтры с взаимно перпендикулярными осями поляризации (a и b ), оказывается прозрачной для внешнего светового потока, частично ослабевающего при прохождении входного поляризатора.

Находясь под воздействием электрического поля, молекулы жидкокристаллического слоя меняют свою ориентацию, и угол поворота плоскости поляризации светового потока заметно уменьшается. В этом случае большая часть светового потока поглощается выходным поляризатором. Таким образом, управляя уровнем электрического поля, можно менять прозрачность элементов матрицы.

ЖК-панели выпускают пассивными и активными. В цветных телевизорах преимущественно используют активные.

Основой активной панели (рисунок 5.5) служат две плоскопараллельные пластины, на одну из которых нанесены горизонтальные электроды, соответствующие строкам, и вертикальные электроды (столбцы). Число строк разложения определяет разрешающую способность по горизонтали. В местах их пересечения укрепляются тонкопленочные транзисторы (TFT), затворы которых подключены к горизонтальным электродам, а истоки  к вертикальным. Стоки транзисторов образуют первые обкладки миниатюрных конденсаторов (ячеек), соответствующих элементам изображения. В качестве второй обкладки конденсаторов работает полупрозрачный слой металлизации на второй стеклянной пластине, расположенной параллельно на расстоянии, измеряемом микронами. Между пластинами введено органическое вещество, обладающее свойствами жидкого кристалла. Эта жидкость по химическому составу близка к холестерину. Для калибровки зазора между пластинами в слой жидкости введено некоторое количество микроскопических стеклянных цилиндриков, диаметр которых и определяет зазор. На панель с двух сторон наложены поляроидные пленки, плоскости поляризации которых повернуты на 90 одна относительно другой. При отсутствии напряжения на конденсаторе ЖК вещество поворачивает плоскость поляризации ещё на 90. В результате свет свободно проходит через ячейки. При подаче напряжения на обкладки конденсатора изменяется структура ЖК вещества, что вызывает дополнительный поворот плоскости поляризации. Когда угол её поворота в веществе уменьшается до нуля, ячейка престает пропускать свет. Это свойство и позволяет получить изображение. Чтобы оно было цветным, панель содержит матричный светофильтр, состоящий из «красных», «зелёных» и «синих» ячеек, центры которых расположены напротив элементарных конденсаторов панели и чередуются вдоль строки (R  G  B  R). В соседних строках цветовые ячейки светофильтра смещены по горизонтали на одну, чтобы на изображении не получилось визуально заметной вертикальной структуры. Позади панели устанавливают лампу подсветки.

ЖК панели рассчитывают для работы во вполне определённом телевизионном стандарте. В простейших приемниках оба поля телевизионного кадра воспроизводятся на одних и тех же элементах строки без чересстрочности. При этом число горизонтальных электродов должно быть равно числу активных строк в поле телевизионного изображения. Для отечественного стандарта D/K число горизонтальных электродов должно быть равно . Если на такую панель подать телевизионный сигнал другого стандарта, например M, где число строк в поле 262,5, то размер изображения будет сжат по вертикали. При увеличении размера экрана по диагонали свыше 15 см необходимо воспроизводить раздельно оба поля и обеспечивать чересстрочную развертку. Тогда число строчных электродов в панели необходимо увеличивать до числа активных строк в кадре.

Рисунок 5.5  Конструкция жидкокристаллического экрана

В ЖК телевизоре большого формата для обеспечения приема сигнала разных систем целесообразно использовать преобразования стандартов двумерными фильтрами. Для управления панелью служат устройства кадровой и строчной развертки, входящие в ее состав. Устройство кадровой развертки обеспечивает поочередный выбор строчных электродов, подавая на них импульсы напряжения. Устройство строчной развертки поочередно выбирает столбцовые электроды, на которые поступают дискретные выборки сигнала. Эти выборки заряжают конденсаторы ячеек. В зависимости от напряжения на них изменяется угол поворота плоскости поляризации света, проходящего через вещество ЖК. В результате изменяется яркость выбранного элемента изображения. Как известно, в масочном кинескопе электронный луч высвечивает триады люминофора. Каждая триада соответствует элементу изображения. При этом невозможно управлять очередностью свечения входящих в триаду люминофорных точек. В ЖК панели возможно раздельное управление каждой цветовой точкой, соответствующей пересечению строчного и столбцового электродов, что позволяет применять различные законы разложения изображения. Отсчёты сигнала изображения, соответствующие выбранной строке, можно предварительно записать в регистр и одновременно подать на все столбцовые электроды. Выборки сигнала можно также подавать на электроды столбцов поочередно с заданным законом чередования. Так как зрительный аппарат человека не воспринимает окраску мелких деталей, то в панелях малого формата следующие вдоль строки элементы изображения можно создавать не из трех, а из одной составляющей цвета. Например, первый элемент  R, второй  G, третий  B, четвертый  R и так далее. При этом четкость изображения по горизонтали увеличивается в три раза по сравнению с масочным кинескопом, где каждый элемент содержит три люминофорных точки разных цветов. Для уменьшения тактовых частот в блоках разверток используют поочередное управление четным и нечетными строками и столбцами. В соответствии с этим и сами блоки разверток выполняют из двух частей. Микросхемы кадровой развертки располагают справа и слева от ЖК панели, микросхемы строчной развертки  сверху и снизу. Поскольку ЖК экран  клапанное устройство, для его работы необходима лампа подсветки. Обычно это люминесцентная лампа. Необходимы также отражатель и рассеиватель света для обеспечения равномерной засветки. Яркость лампы должна быть относительно большой, так как ЖК панель даже в режиме максимальной прозрачности поглощает большую часть светового потока.

Относительно недавно появились ЖК-телевизор со светодиодной подсветкой (в разговорном языке именуемый LED TV (сокр. от L ight E mitting D iode T eleV ision) - телевизор с жидкокристаллическим дисплеем, подсветка экрана которого осуществляется светодиодной матрицей (LED).

С потребительской точки зрения ЖК-телевизоры со светодиодной (СД) подсветкой отличают четыре улучшения относительно ЖК c подсветкой электролюминесцентными лампами:

    Улучшенная контрастность;

    Улучшенная цветопередача;

    Пониженное энергопотребление;

    Малая толщина корпуса.

Плазма: технические аспекты

Даже самая современная технология когда нибудь должна уйти с рынка. Появляются все новые и новые решения, одно лучше другого. Сначала были кинескопные телевизоры, теперь их теснят плазменные панели. В последние 75 практически ничего не менялось - подавляющее большинство телевизоров выпускалось на базе одной технологии - т. н. электронно-лучевой трубки (ЭЛТ). В таком телевизоре `электронная пушка` испускает поток отрицательно заряженных частиц (электронов), проходящий через внутреннее пространство стеклянной трубки, т. е. кинескопа. Электроны `возбуждают` атомы фосфорного покрытия на широком конце трубки (экране), это заставляет фосфор светиться. Изображение формируется путем последовательного возбуждения различных участков фосфорного покрытия разных цветов, с различной интенсивностью.

Используя ЭЛТ, можно создавать четкие изображения с насыщенным цветом, однако имеется серьезный недостаток - кинескоп выходит слишком громоздким. Для того, чтобы увеличить ширину экрана в ЭЛТ-телевизоре, необходимо увеличить и длину трубки. В результате любой ЭЛТ-телевизор с большим экраном должен весить добрые несколько центнеров. Сравнительно недавно, в 90-е гг прошлого века на экранов магазинов появилась альтернативная технология - плоскопанельный плазменный дисплей. Такие телевизоры имеют широкие экраны, больше самых больших ЭЛТ, при этом они всего около 15 см. в толщину. `Бортовой компьютер` плазменной панели последовательно зажигает тысячи и тысячи крошечных точек-пикселей. В большинстве систем покрытие пикселей использует три цвета - красный, зеленый и синий. Комбинируя эти цвета телевизор может создавать весь цветовой спектр. Таким образом, каждый пиксель создан из трех ячеек, представляющих собой крошечные флуоресцентные лампы. Как и в ЭЛТ-телевизоре, для создания всего многообразия оттенков цветов меняется интенсивность свечения ячеек. Основа каждой плазменной панели - это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц. Отдельные атомы газа содержат равное число протонов (частиц с положительным зарядом в ядре атома) и электронов. Электроны `компенсируют` протоны, таким образом, что общий заряд атома равен нулю. Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион. Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.


Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя из высвобождать энергию в виде фотонов. В плазменных панелях используются в основном инертные газы - неон и ксенон. В состоянии `возбуждения` они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза. Тем не менее, ультрафиолет можно использовать и для высвобождения фотонов видимого спектра. Внутри дисплея В плазменном телевизоре `пузырьки` газов неона и ксенона размещены в сотни и сотни тысяч маленьких ячеек, сжатых между двумя стеклянными панелями. Между панелями по обеим сторонам ячеек расположены также длинные электроды. `Адресные` электроды находятся за ячейками, вдоль задней стеклянной панели. Прозрачные электроды покрыты диэлектриком и защитной пленкой оксида магния (MgO). Они располагаются над ячейками, вдоль передней стеклянной панели. Обе `сетки` электродов перекрывают весь дисплей. Электроды дисплея выстроены в горизонтальные ряды вдоль экрана, а адресные электроды расположены вертикальными колонками. Как видно на рисунке ниже, вертикальные и горизонтальные электроды формируют базовую сетку.


Для того, чтобы ионизировать газ в отдельной ячейке, компьютер плазменного дисплея заряжает те электроды, которые на ней пересекаются. Он делает это тысячи раз за малую долю секунды, заряжая каждую ячейку дисплея по очереди. Когда пересекающиеся электроды заряжены, через ячейку проходит электрический разряд. Поток заряженных частиц заставляет атомы газа высвобождать фотоны света в ультрафиолетовом диапазоне. Фотоны взаимодействуют с фосфорным покрытием внутренней стенки ячейки. Как известно, фосфор - материал, под действием света сам испускающий свет. Когда фотон света взаимодействует с атомом фосфора в ячейке, один из электронов атома переходит на более высокий энергетический уровень. После чего электрон смещается назад, при этом высвобождается фотон видимого света.

Пиксели в плазменной панели состоят из трех ячеек-субпикселей, каждая из которых имеет свое покрытие - из красного, зеленого или синего фосфора. В ходе работы панели эти цвета комбинируются компьютером, создаются новые цвета пикселя. Меняя ритм пульсации тока, проходящего через ячейки, контрольная система может увеличивать или уменьшать интенсивность свечения каждого субпикселя, создавая сотни и сотни различных комбинаций красного, зеленого и синего цветов. Главное преимущество производства плазменных дисплеев - возможность создавать тонкие панели с широкими экранами. Поскольку свечение каждого пикселя определяется индивидуально, изображение выходит потрясающе ярким, причем при просмотре под любым углом. В норме насыщенность и контрастность изображения несколько уступает лучшим моделям ЭЛТ-телевизоров, но вполне оправдывает ожидания большинства покупателей. Главный недостаток плазменных панелей - их цена. Дешевле пары тысяч долларов новую плазменную панель купить невозможно, модели hi-end класса обойдутся в десятки тысяч долларов. Впрочем, с течением времени технология значительно усовершенствовалась, цены продолжают падать. Сейчас плазменные панели начинают уверенно теснить ЭЛТ-телевизоры. особенно это заметно в богатых, технологически развитых странах. В ближайшем будущем `плазма` придет в дома даже небогатых покупателей. Описание работы плазмы другими словами Плазменные панели немного похожи на ЭЛТ-телевизоры - покрытие дисплея использует способный светиться фосфоросодержащий состав. В то же время они, как и LCD, используют сетку электродов с защитным покрытием из оксида магния для передачи сигнала на каждый пиксель-ячейку. Ячейки заполнены интернтыми, т. н. `благородными` газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. Будучи электрически нейтральной, плазма содержит равное число электронов и ионов и является хорошим проводником тока. После разряда плазма испускает ультрафиолетовое излучение, заставляющий светиться фосфорное покрытие ячеек-пикселей. Красную, зеленую или синюю составляющую покрытия.

На самом деле каждый пиксель делится на три субпикселя, содержащих красный, зеленый либо синий фосфор. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` - при помощи 8-битной испульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков. Тот факт, что плазменные панели сами являются источником света, обеспечивает отличные углы обзора по вертикали и горизонтали и великолепную цветопередачу (в отличие от, например, LCD, экраны в которых обычно нуждаются в подсветке матрицы). Впрочем, обычные плазменные дисплеи в норме страдают от низкой контрастности. Это обусловлено необходимостью постоянно подавать низковольтный ток на все ячейки. Без этого пиксели будут `включаться` и `выключаться` как обычные флуоресцентные лампы, то есть очень долго, непозволительно увеличивая время отклика. Таким образом, пиксели должны оставаться выключенными, в то же время испуская свет низкой интенсивности, что, конечно, не может не сказаться на контрастности дисплея. В конце 90-х гг. прошлого века Fujitsu удалось несколько смягчить остроту проблемы, улучшив контрастность своих панелей с 70:1 до 400:1. К 2000 году некоторые производители заявляли в спецификациях панелей контрастность до 3000:1, сейчас - уже 10000:1+. Процесс производства плазменных дисплеев несколько проще, чем процес производства LCD. В сравнении с выпуском TFT LCD-дисплеев, требующим использования фотолитографии и высокотемпературных технологий в стерильно чистых помещениях, `плазму` можно выпускать в цехах погрязнее, при невысоких температурах, с использованием прямой печати. Тем не менее, век плазменных панелей недолог - совсем недавно среднестатистический ресурс панели равнялся 25000 часов, сейчас он почти удвоился, но проблему это не снимает. В пересчете на часы работы плазменный дисплей обходится дороже LCD. Для большого презентационного экрана разница не очень существенная, однако, если оснастить плазменными мониторами многочисленные офисные компьютеры, выигрыш LCD становится очевидным для компании-покупателя. Рейтинг 5.00 /5 (1 Голос)

Подробности Техцентр Киевский Москва 84992490989

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Фил Коннор
Ноябрь 2002г

Что лучше: плазменная панель или LCD телевизор?

Это зависит от многих факторов. Тема обсуждения двух технологий, которые обрабатывают и отображают входной видео- или компьютерный сигнал совершенно по-разному, сложна и изобилует многочисленными деталями. Обе технологии быстро прогрессируют, а их себестоимость и розничные цены снижаются одновременно. В ближайшем будущем между этими технологиями неизбежно столкновение в линейке 40-дюймовых (по диагонали) мониторов/телевизоров.

Ниже перечисляются некоторые преимущества каждой технологии; также даётся объяснение связи между этими преимуществами и покупателями той и другой технологии в различных областях применения:

1) ВЫЖИГАНИЕ ЭКРАНА

Для LCD можно не учитывать факторы, приводящие к выжиганию экрана при отображении статической картинки. В технологии LCD (жидкокристаллический дисплей) применяется по сути флуоресцентная тыловая лампа, свет от которой идёт через пиксельную матрицу, содержащую жидкокристаллические молекулы и поляризованный субстрат для придания формы яркости и цвету. Жидкий кристалл, находящийся в LCD, в действительности применяется в твёрдом состоянии.

У плазменной технологии, напротив, следует учитывать факторы, приводящие к выжиганию экрана при отображении статической картинки. Статические изображения начнут «выжигать» отображаемую картинку уже через короткий промежуток времени - в некоторых случаях, спустя приблизительно 15 минут. Хотя «выжигание» можно обычно «снять», выводя на весь экран серое или сменяющие друг друга одноцветные поля, оно тем не менее является существенным фактором, препятствующим развитию плазменной технологии.

Преимущество: LCD

Для таких областей применения, как отображение в аэропортах информации о полётах, статические картинки-витрины в розничных магазинах или постоянные информационные показатели, LCD–монитор будет наилучшим вариантом.

2) КОНТРАСТНОСТЬ

Плазменная технология добилась значительных успехов в разработке изображений повышенной контрастности. Panasonic утверждает, что их плазменные дисплеи имеют контрастность 3000:1. Плазменная технология просто блокирует подачу электропитания (посредством сложных внутренних алгоритмов) на определенные пикселы для того, чтобы сформировать тёмные или чёрные пикселы. Эта методика действительно даёт тёмные чёрные цвета, хотя иногда и в ущерб проработке полутонов.

В LCD технологии, напротив, нужно увеличивать подачу энергии, чтобы сделать пикселы более тёмными. Чем больше напряжение, подаваемое на пиксел, тем темнее LCD-пиксел. Несмотря на достигнутые улучшения LCD технологии в плане контрастности и уровня чёрного, даже лучшие производители LCD технологии, например Sharp, могут обеспечить контрастность лишь между 500:1 и 700:1.

Для просмотра DVD фильмов, где обычно много очень светлых и очень темных сюжетов и в компьютерных играх с характерным для них обилием темных сцен, плазменная панель имеет явное преимущество.

3) ДОЛГОВЕЧНОСТЬ

Производители LCD утверждают, что долговечность их мониторов/телевизоров составляет от 50.000 до 75.000 часов. LCD-монитор может работать столь же долго, сколько работает тыловая лампа (которую в действительности можно заменять), так как свет от неё, подвергаясь воздействию жидкокристаллической призмы, обеспечивает яркость и цвет. Призма является субстратом, и поэтому на самом деле ничего не выжигает.

С другой стороны, в плазменной технологии на каждый пиксел подаётся электрический импульс, который возбуждает инертные газы - аргон, неон и ксенон (люминофоры), необходимые для обеспечения цвета и яркости. Когда электроны возбуждают люминофор, атомы кислорода рассеиваются. Изготовители плазмы оценивают долговечность люминофоров и, следовательно, самих панелей в 25.000 – 30.000 часов. Люминофоры не могут быть заменены. Не существует такого явления, как закачка новых газов в плазменный дисплей.

Преимущество: LCD, в два и более раза.

В промышленных/коммерческих областях применения (например, в витринах информационных табло, где дисплеи должны работать круглосуточно), где как правило не слишком высокие требования к качеству изображения, LCD будет наилучшим вариантом для длительного использования.

4) НАСЫЩЕННОСТЬ ЦВЕТА

Цвет более точно воспроизводится в плазменных панелях, поскольку вся информация, необходимая для воспроизведения любого оттенка в спектре, содержится в каждой ячейке. Каждый пиксел содержит синий, зелёный и красный элементы для точной передачи цвета. Насыщенность, достигаемая благодаря конструкции пиксела плазменной панели, обеспечивает, на мой взгляд, самые живые цвета среди дисплеев всех типов. Координаты цвета в цветовом пространстве в хороших плазменных панелях намного более точны, чем в LCD.

В LCD по физическим условиям прохождения волн сквозь длинные тонкие жидкокристаллические молекулы сложнее добиться эталонной точности и живости цветопередачи. Цветовая информация имеет преимущество вследствие меньшего размера пиксела в большинстве LCD–телевизоров. Однако при одинаковом размере пиксела цвет будет не таким выразительным, как у плазменных панелей.

Плазменная технология превосходит LCD при показе видео, особенно, в динамичных сценах. LCD предпочтительна для отображения статических компьютерных изображений, не только из-за выжигания, но и потому, что она также обеспечивает прекрасные однородные цвета.

5) ВЫСОТА НАД УРОВНЕМ МОРЯ

Как было упомянуто выше, в LCD применяется технология задней подсветки в комбинации с жидкокристаллическими молекулами. В принципе, нет ничего, что служило бы препятствием для размещения этого монитора на высокогорье, как и нет никаких реальных ограничений. Этим объясняется использование LCD экранов в качестве главного обзорного экрана для отображения видеоинформации о полётах.

Поскольку ячейка плазменного экрана в плазменных панелях в действительности является стеклянной оболочкой, наполненной инертным газом, то разреженный воздух приводит к росту давления газа внутри этой оболочки и увеличивает мощность, требуемую для нормального охлаждения плазменной панели, в результате чего появляется характерное гудение (жужжание) и слишком заметный шум от вентилятора. Эти проблемы возникают на высоте приблизительно 2.000 метров.

Преимущество: LCD

На высоте Денвера и выше для любых областей применения я бы использовал LCD мониторы.

6) УГОЛ ОБЗОРА

Производители плазменных мониторов всегда утверждали, что их изделия имеют угол обзора 160° - по сути, это так и есть. LCD добилась значительных успехов в увеличении угла обзора. В LCD-мониторах нового поколения фирм Sharp и NEC материал ЖК-основы значительно улучшен; расширен и динамический диапазон. Но несмотря на эти успехи, при просмотре монитора/телевизора под большими углами заметное отличие между двумя технологиями всё ещё сохраняется.

Преимущество: плазменная панель

Каждая ячейка плазменной панели представляет собой самомстоятельный источник света, что позволяет добиться превосходной яркости каждого пиксела. Отсутствие устройства задней подсветки (как в LCD) тоже хорошо с точки зрения угла обзора.

7) ИСПОЛЬЗОВАНИЕ С КОМПЬЮТЕРОМ

LCD эффективно отображает статические компьютерные изображения, без мерцаний и выжигания экрана.

Плазменной панели труднее обрабатывать статические изображения от компьютера. Хотя их отображение выглядит удовлетворительным, проблемой является выжигание экрана; представляет трудность и эффект ступенчатости, встречающийся в панелях с меньшей разрешающей способностью при отображении статичного текста (Power Point). Видеоизображения с компьютера получаются качественными, но возможно некоторое мерцание, зависящее как от заводского качества панели, так и от отображаемого разрешения. Плазменная панель, конечно же, по-прежнему выигрывает по углу обзора.

Преимущество: LCD, за исключением больших углов обзора.

8) ВОСПРОИЗВЕДЕНИЕ ВИДЕО

Здесь первенство за плазменными панелями, благодаря прекрасному качеству при отображении сцен с быстрым движением, высокому уровню яркости, контраста и цветовой насыщенности.

На LCD могут быть заметны цветовые шлейфы во время показа видеосцен с быстрым движением, так как эта технология медленнее отрабатывает изменения цвета. Причиной этого являются световые призмы, которые должно быть появляются вследствие воздействия напряжения, управляющего отклонением светового луча. Чем более высокое напряжение подаётся на кристалл, тем темнее становится изображение в этой части LCD панели. По этой же причине у LCD более низкие уровни контрастности.

Преимущество: плазменная панель, с большим запасом.

DVD или любое потоковое видео, TV или HDTV – от любого из этих видеоисточников плазменная панель покажет неразмытое, с высокой контрастностью (в зависимости от плазмы), насыщенное цветами изображение. Несмотря на значительные успехи в этом направлении, LCD по-прежнему испытывает некоторые трудности при сравнительно больших размерах экрана, хотя при меньших размерах смотрится превосходно.

9) ОБЪЕМЫ ПРОИЗВОДСТВА И СТОИМОСТЬ

Хотя обе технологии испытывают трудности при создании мониторов большого размера, большую плазменную панель все же оказалось сделать легче, производители уже выпустили плазменные панели с диагональю более 60 дюймов. Хотя такие мониторы всё ещё стоят дорого, они продемонстрировали свою эффективность и надёжность. ЖК-основу большого размера для LCD телевизора трудно изготовить без дефектных пикселов. На данный момент самый большой LCD экран - это 40–дюймовая коммерческая версия фирмы NEC. До этого Sharp наращивал свою линейку LCD-мониторов от 20 до 22 и затем до 30 дюймов, а сейчас начинает поставлять на рынок новую 37–дюймовую широкоэкранную панель.

Преимущество: плазменная панель.

Несмотря на то, что себестоимость и цены на изделия обеих технологий снижаются (за исключением цен на большие плазменные панели), плазменная панель по-прежнему имеет более низкую себестоимость производства и поэтому имеет преимущество в цене. 50–дюймовые плазменные панели чрезвычайно популярны и быстро отвоевывают долю рынка у ранее доминировавших 42–дюймовых панелей. Такая тенденция для плазменных панелей, имеющих более высокий процент выхода годных изделий в производстве и, как следствие, более низкую себестоимость, будет, вероятно, сохраняться в течение по меньшей мере 2-х лет.

10) ТРЕБОВАНИЯ ПО НАПРЯЖЕНИЮ

Поскольку в LCD для получения света используется флуоресцентная лампа задней подсветки, у этой технологии гораздо меньшие требования по напряжению, чем у плазменных панелей. С другой стороны, при использовании плазменной панели необходимым (трудновыполнимым) условием является подача питания на сотни тысяч прозрачных электродов, которые возбуждают свечение ячеек люминофора.

Технологии производства современных телевизоров наделяют их разными характеристиками, таким образом, существует значительная разница между ЖК-панелью и плазмой. Если вы стоите перед выбором в пользу той или иной модели, важно оценить все плюсы и минусы каждого типа. Бытовые устройства такого плана приобретают на продолжительный срок, а полная осведомленность, чем именно они отличаются, поможет не допустить досадной ошибки.

Ответ не будет полным без обзора типов ЖК-телевизоров. Современный рынок предлагает три ведущих технологии . Каждая отличается как принципом работы, так и стоимостью. Самые последние разработки наиболее «продвинутые», бюджетные модели самые простые, они морально устарели, но по сей день пользуются большим спросом за счет своей ценовой доступности и практичности.

Для полного понимания следует уточнить, что анализу будут подвергнуты только те модели жидкокристаллических телевизоров, которые продаются сейчас. Они значительно превосходят образцы ранних годов выпуска.


Как и любая новинка, OLED-панель стоит дороже предыдущих типов, причем разница может достигать 10 кратного размера. Это компенсируется отличным изображением, а также внушительной диагональю более 55 дюймов.

Практические различия двух технологий

Разницу между ЖК-панелью и плазменным телевизором можно свести к нескольким ключевым пунктам, собственно, ими и руководствуются покупатели. Подобную же информацию могут предоставить продавцы-консультанты в магазинах.

  • Яркость и контрастность . У ЖК-телевизоров (кроме OLED) данные показатели ниже, чем у плазмы. Причина кроется в том, что подсвечиваемые жидкие кристаллики пропускают свет в соседние колонки, из-за чего черный цвет более похож на темно-серый. Плазма, в свою очередь, не нуждается в подсветке, обеспечивая яркую, насыщенную и контрастную картинку.
  • Экономия . Плазменная панель потребляет значительно больше электроэнергии, порядка 300-450 Вт, ЖК-устройство расходуется в 10 раз меньше. Зная, можно существенно сэкономить.
  • Перегрев . К нему склонны все плазменные панели. Охлаждение в них принудительное, из-за чего слышен звук вентилятора. Компенсируется это тем, что такие телевизоры большого размера, их смотрят издалека, на расстоянии 3-4 м.
  • Угол обзора . У ЖК-панели он ограничен в пределах 160-180° по вертикали и горизонтали. При превышении угла (просмотра сбоку или снизу) падает контрастность, экран светлеет или темнеет. У «плазмы» ограничений нет.

  • Продолжительность работы . Плазменная панель рассчитана на 40 000 часов работы, после чего экран выгорает, теряются все преимущества насыщенной картинки, а жидкокристаллические дисплеи не теряют качества (условный срок службы 80 000 часов). Но, если обратиться к отзывам пользователей «плазмы» — первые признаки потери цвета можно отметить уже через 4 года интенсивного использования.
  • Безопасность для человека. Обе технологии полностью экологичны и безопасны для организма человека.
  • Надежность. В плане механической надежности «плазма» несколько выигрывает.
  • Стоимость. Довольно много LCD-телевизоров по цене, доступной для каждого. В общем ассортименте ЖК-устройства перекрывают все ценовые категории, а «плазма» — средние и высокие.

Это все основные характеристики, чем отличается ЖК-панель от плазменного телевизора. Производители могут быть одни и те же, например, компания Panasonic выпускает как жидкокристаллические, так и плазменные дисплеи.

Функционал двух технологий

Если рассматривать только современные разработки, то и жидкокристаллические, и плазменные телевизоры оснащаются всеми передовыми опциями. Сюда можно отнести разрешение экрана Full HD (1080р, 1080i) или ; поддержку 3D, HDTV и основных телевизионных стандартов.

Важно знать! Для просмотра обычного ТВ: кабельного или антенного, подходят бюджетные модели ЖК-телевизоров, а более технологичные OLED или плазменные панели предназначены для просмотра DVD-дисков или фильмов с носителей. Их высокое разрешение существенно превышает качество транслируемого аналогового телевидения: оно выглядит размытым и нечетким на больших дисплеях.

Плазменные устройства , обладая большими размерами, всегда сочетают разнообразие функций. Жидкокристаллические бюджетные модели могут отличаться разрешением (720р, 1080р), поддерживают основные форматы видео, имеют USB-разъем, но в целом – это довольно простые телевизоры. Впрочем, сравнивать такие устройства с плазменными панелями не совсем уместно. OLED панели вполне могут соревноваться с «плазмой» по размерам, стоимости, а также качеству картинки. Но отличаются более низкой ценой, экономичным расходом энергии.

Плазменная панель Panasonic TH-85VX200W

Подводя итог

Плазменная панель – большой телевизор премиум-класса со стандартными характеристиками и отличным изображением. Оценивая диагональ и функционал, можно сделать вывод, что такие панели стоят недорого, но ассортимент их в магазинах слишком узок. Впрочем, если вы хотите организовать , то плазмы будет оправдан.

ЖК-дисплеи представлены богатым выбором , разнообразным функционалом, широкой ценовой категорией. Можно встретить как бюджетные модели, так и премиум. Их выпускают в различных цветах (преимущественно черные или белые). Набор опций может быть любым, от максимального до самого простого, доступного для понимания людям, которые редко пользуются электроникой или плохо в ней разбираются.

Таким образом, каждый сможет подобрать оптимальную модель телевизора среди плазменных или жидкокристаллических телевизоров.

Плазменная панель

Плазменный телевизор

Газоразрядный экран (также широко применяется английская калька «плазменная панель ») - устройство отображения информации , монитор , основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря в плазме . (См. также: SED).

Конструкция

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды , образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции:

  • суб-пиксель плазменной панели обладает следующими размерами 200 мкм x 200 мкм x 100 мкм;
  • передний электрод изготовляется из оксида индия и олова , поскольку он проводит ток и максимально прозрачен.
  • при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома , несмотря на его непрозрачность;
  • для создания плазмы ячейки обычно заполняются газом - неоном или ксеноном (реже используется гелий и/или аргон , или, чаще, их смеси).

Химический состав люминофора:

Существующая проблема в адресации миллионов пикселей решается расположением пары передних дорожек в виде строк (шины сканирования и подсветки), а каждой задней дорожки в виде столбцов (шина адресации). Внутренняя электроника плазменных экранов автоматически выбирает нужные пиксели. Эта операция проходит быстрее, чем сканирование лучом на ЭЛТ -мониторах. В последних моделях PDP обновление экрана происходит на частотах 400-600 Гц, что не позволяет человеческому глазу замечать мерцания экрана.

Принцип действия

Работа плазменной панели состоит из трех этапов:

  1. инициализация , в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей - завершение упорядочивания.
  2. адресация , в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.
  3. подсветка , в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация - адресация - подсветка» образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста . В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит емкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.

Примечания

Ссылки

Литература

  • Мухин И. А. Принципы развертки изображения и модуляция яркости свечения ячейки плазменной панели . «Труды учебных заведений связи № 168», Санкт-Петербург, 2002, СПбГУТ, стр.134-140.