Tillmann Steinbrecher

Основная проблема воздушного охлаждения ПК- шум. При увеличении скорости вентиляторов увеличивается и шум. Шум раздражает, отрицательно влияет на наше здоровье и производительность.

Так почему бы не начать бороться с ним? Решение - терморегулятор. В большинстве ПК вентиляторы вращаются с максимальной скоростью, вне зависимости от загруженности процессора и внешней температуры. Современные вентиляторы ПК имеют встроенные терморегуляторы, впрочем как и некоторые материнские платы.

Идея использования терморегулятора сама по себе не нова, сейчас вентиляторы с функцией терморегуляции довольно распространены. К сожалению, большинство из них имеют свои недостатки:

  • Температура процессора устанавливается автоматически. Недостатком такого подхода является отсутствие возможности подстройки вентилятора под конкретную модель процессора (рабочие температуры разных процессоров отличаются). Очевидно, что такие вентиляторы совершенно не подходят для overclocking"a.
  • Большинство вентиляторов регулируют скорость вращения лопастей, однако не могут отключиться полностью. Это особо актуально для вентиляторов, используемых в корпусах ПК. К тому же существуют процессоры, которые при отсутствии загрузки вообще не требуют охлаждения.
  • Каждый вентилятор требует отдельный сенсор. Поэтому наилучшим решением будет создать терморегулятор для вентилятора самостоятельно.

За смешную цену в 4$, терморегулятор будет иметь следующие особенности:

  • Возможность подстройки температуры пользователем.Настройка температуры сможет производиться в большом диапазоне, поэтому терморегулятор можно будет применять как для вентиляторов, используемых в корпусе ПК, так и для вентиляторов, используемых с процессором.
  • Вентилятор отключается, если температура достигает определенного минимума.
  • Возможность одновременного использования одного сенсора с несколькими вентиляторами. Итак, теперь, покончив с теорией, можно приступать непосредственно к сборке устройства.

Нам понадобиться всего лишь три (!) элемента:

  • Силовой MOSFET транзистор (N канальный)
  • Потенциометр 10 кОм
  • Сенсор температуры NTC с сопротивление в 10 кОм (термистор)

Достать любой элемент не составит никакого труда. Особых требований к MOSFET"у нет - напряжение более 12 В. Собирая устройство, был использован IRFZ24N MOSFET 12 В и 10 А. Для жителей США - IFR510 Power MOSFET.

Потенциометр - любой. И наконец, NTC термистор. Вы можете использовать любой термистор, единственные параметры - сопротивление (10 кОм) и цена (минимальная).

Возможно, вам понадобятся:

  • Макетная плата. Необязательна, но для удобства все же стоит воспользоваться.
  • Радиатор для транзистора. В нормальных условиях необязателен, однако при использовании более трех вентиляторов, все - же придется установить.

Предупреждения!!!
Убедитесь, что вы хорошо изолировали устройство. Не допускайте контакта устройства с корпусом и др. элементами ПК. Измерение скорости вентилятора не будет работать. Не пытайтесь подключить провод сигнала к материнской плате - это может повредить ее. Теперь необходимо настроить терморегулятор. Для этого включаем «холодный» компьютер.

Регулируем сопротивление потенциометра и устанавливаем его на значении, при котором лопасти вентилятора не вращаются. Когда температура начинает приближаться к максимальной уменьшаем сопротивление до того как вентилятор начинает слабо вращаться. Не жалейте времени настраивая нужное сопротивление, т.к. от этого зависит эффективность всего устройства. Если настройки неправильны компьютер перегреется или же вентилятора будут работать на максимальной мощности все время. Если вы добавили дополнительный вентилятор необходимо настроить терморегулятор заново.

Внимание!
Вы собираете это устройство на свой страх и риск, автор не несет никакой ответственности за последствия использования этого устройства.

Такая система была проверена не однократно, как вариант – простой и доступный. Устройство из себя представляет терморегулятор для вентилятора , который с успехом можно использовать для автомобиля. Устройство состоит всего из 3-х компонентов – силовой транзистор, термистор на 10 килоОм и подстроечный резистор.

Транзистор нужен мощный, поскольку он является силовой частью регулятора и при подключении мощных вентиляторов через него будет протекать большой ток. Термистор работает в качестве датчика температуры. Подстроечный резистор на 10 кОм желательно взять многооборотный, для более точной настройки устройства.

Система идеально подходит для старых отечественных автомобилей, где вентилятор вращается независимо от температуры воды в двигателе. Полевой транзистор можно заменить на более мощный, к примеру IRZF44, IRFZ40, IRFZ46, IRFZ48, IRL3705, IRF3205 и другие – последний довольно мощный, рассеиваемая мощность на этом транзисторе составляет 200 ватт. В любом случае, транзистор нужно будет укрепить на теплоотвод, его просто можно укрепить к кузову автомобиля – через изолирующие пластинки и шайбы (обязательно), при маломощных нагрузках до 50 теплоотвод не потребуется.

Медленно вращая переменный резистор добиваемся нужной степени температурного срабатывания системы.
Как известно, термисторы бывают двух основных видов – с положительным и отрицательным температурным коэффициентом. В случае первого при повышении температуры сопротивление возрастает, а с отрицательным коэффициентом – уменьшается. В моем опыте был использован термистор с положительным коэффициентом температуры, поскольку второй разновидности под рукой в тот момент не оказалось.

Когда термистор нагревается до определенного уровня, то его сопротивление резко возрастает и прекращается подача тока на затвор силового ключа, в следствии чего, полевой ключ закрывается, при прекращении нагрева сопротивление термистора уменьшается (в моем случае 220-230 Ом, при комнатной температуре порядка 19гр) и опять возобновляется подача тока на затвор ключа, последний открывается, подавая напряжение на вентилятор.




На базе такой простейшей схемы можно построить довольно чувствительные датчики температуры, которые можно будет использовать в быту, для реализации самых разных идей, при использовании более точных переменных резисторов (многооборотный резистор) можно добиться срабатывания и отключения того или иного устройства от температуры человеческого тела.

Не так давно попался в руки блок питания Enhance P520N от домашнего компьютера. Помимо основной платы блока питания, в ней обнаружилась еще небольшое устройство. Это был терморегулятор скорости вращения вентилятора. Схема простенькая, содержит всего два транзистора, четыре резистора, диод и конденсатор. Схема устройства показана на рисунке 1.

Данный регулятор можно применять не только для блоков питания, но и в усилителях мощности низкой частоты, сварочных аппаратах, мощных преобразователях, регуляторах мощности и т.д. Зачем зря жужжать, если все ПП (полупроводниковые приборы) холодные. Диод VD1, стоящий на плате и в указанной схеме по всей вероятности нужен только в конкретном ИИП, поэтому его можно убрать. На плате стоит диод 1N4002. Первый транзистор можно заменить на отечественный — КТ3102. Импортный транзистор C1384 по документации рассчитан на ток коллектора 1А, напряжение коллектор-эмиттер 60В, постоянная рассеиваемая мощность коллектора 1 ватт. Можно попробовать заменить на наш КТ814 с любой буквой или на КТ972. Электролитический конденсатор должен быть на напряжение 16 вольт.

Начальную скорость вращения вентилятора выбирают изменением величины сопротивления резистора R1. Схема работает следующим образом. Когда температура внутри контролируемого объема или непосредственно теплоотвода ПП невысокая, то транзистор VT2 призакрыт и вентилятор имеет не большую скорость вращения. При увеличении температуры начинает уменьшаться сопротивление терморезистора Rt, что в свою очередь приведет к уменьшению напряжения на базе VT1, начнет уменьшаться и ток коллектора этого транзистора. Уменьшение тока через первый транзистор приведет к увеличению тока база-эмиттер второго транзистора VT2 (уменьшится шунтирующее действие транзистора VT1 на переход база-эмиттер VT2). Транзистор VT2 начнет открываться, напряжение на вентиляторе начнет возрастать, Скорость его вращения увеличится.
Для большей универсальности в схему можно ввести стабилизатор напряжения, например, КР142ЕН8Б. У этой микросхемы максимальное входное напряжение во всем диапазоне температур равно 35 вольт.
Вид платы показан на фото 1, а рисунок печатной платы на рисунке 2.

Предназначен для замыкания силовой электрической цепи при заданной температуре.

Часто используется в электрических шкафах для включения вентиляторов или кондиционера для защиты оборудования от перегрева.

Устанавливается на DIN рейке защелкиванием. Термостат не имеет собственного электропотребления. Принцип работы термостата основан на принципе деформации биметаллической пластины. Является аналогом термостата STEGO KTS 01141.0-00.

Технические параметры:

  • Номинальный ток: 6(1)A 250VAC;
  • Диапазон регулирования: 0 ... +60°С;
  • Температура хранения и эксплуатации: -20°С... +80°С;
  • Погрешность: ±4°C;
  • Гистерезис: 7°C.

Терморегулятор регистрирует температуру в распределительном шкафу. Должен быть размещен в верхней части распределительного шкафа на максимальном расстоянии от нагревательного прибора или других источников тепла. Устанавливается на стандартной 35мм DIN рейке защелкиванием. Вентиляционные щели терморегулятора не должны быть закрыты. При настройке терморегулятора необходимо учитывать погрешность термостата. Пример: требуемая максимальная внутренняя температура в распределительном шкафу +45°C. Максимальная погрешность термостата +4°C, таким образом необходимо установить на рукоятке термостата 41°C (45°C-4°C).

В этой статье мы будем рассматривать устройства, поддерживающие определенный тепловой режим, или же сигнализирующие о достижении нужного значения температуры. Такие устройства имеют очень широкую сферу применения: они могут поддерживать заданную температуру в инкубаторах и аквариумах, теплых полах и даже являться частью умного дома. Для вас мы предоставили инструкцию о том, как сделать терморегулятор своими руками и с минимумом затрат.

Немного теории

Простейшие измерительные датчики, в том числе и реагирующие на температуру, состоят из измерительного полуплеча из двух сопротивлений, опорного и элемента, меняющего свое сопротивление в зависимости от прилаживаемой к нему температуры. Более наглядно это представлено на картинке ниже.

Как видно из схемы, резистор R2 является измерительным элементом самодельного терморегулятора, а R1, R3 и R4 опорным плечом устройства. Это терморезистор. Он представляет собой проводниковый прибор, который изменяет своё сопротивление при изменении температуры.

Элементом терморегулятора, реагирующим на изменение состояния измерительного плеча, является интегральный усилитель в режиме компаратора. Данный режим переключает скачком выход микросхемы из состояния выключено в рабочее положение. Таким образом, на выходе компаратора мы имеем всего два значения «включено» и «выключено». Нагрузкой микросхемы является вентилятор для ПК. При достижении температуры определенного значения в плече R1 и R2 происходит смещение напряжения, вход микросхемы сравнивает значение на контакте 2 и 3 и происходит переключение компаратора. Вентилятор охлаждает необходимый предмет, его температура падает, сопротивление резистора меняется и компаратор отключает вентилятор. Таким образом поддерживается температура на заданном уровне, и производится управление работой вентилятора.

Обзор схем

Напряжение разности с измерительного плеча поступает на спаренный транзистор с большим коэффициентом усиления, а в качестве компаратора выступает электромагнитное реле. При достижении на катушке напряжения, достаточного для втягивания сердечника, происходит ее срабатывание и подключение через ее контакты исполнительных устройств. При достижении заданной температуры, сигнал на транзисторах уменьшается, синхронно падает напряжение на катушке реле, и в какой-то момент происходит расцепление контактов и отключение полезной нагрузки.

Особенностью такого типа реле является наличие - это разница в несколько градусов между включением и отключением самодельного терморегулятора, из-за присутствия в схеме электромеханического реле. Таким образом, температура всегда будет колебаться на несколько градусов возле нужного значения. Вариант сборки, предоставленный ниже, практически лишен гистерезиса.

Принципиальная электронная схема аналогового терморегулятора для инкубатора:

Данная схема была очень популярна для повторения в 2000 годах, но и сейчас она не потеряла актуальность и с возложенной на нее функцией справляется. При наличии доступа к старым деталям, можно собрать терморегулятор своими руками практически бесплатно.

Сердцем самоделки является интегральный усилитель К140УД7 или К140УД8. В данном случае он подключен с положительной обратной связью и является компаратором. Термочувствительным элементом R5 служит резистор типа ММТ-4 с отрицательным ТКЕ, это значит, что при нагревании его сопротивление уменьшается.

Выносной датчик подключается через экранированный провод. Для уменьшения и ложного срабатывания устройства, длина провода не должна превышать 1 метр. Нагрузка управляется через тиристор VS1 и максимально допустимая мощность подключаемого нагревателя зависит от его номинала. В данном случае 150 Ватт, электронный ключ - тиристор необходимо установить на небольшой радиатор, для отвода тепла. В таблице ниже представлены номиналы радиоэлементов, для сборки терморегулятора в домашних условиях.

Устройство не имеет гальванической развязки от сети 220 Вольт, при настройке будьте внимательны, на элементах регулятора присутствует сетевое напряжение, которое опасно для жизни. После сборки обязательно изолируйте все контакты и поместите устройство в токонепроводящий корпус. На видео ниже рассматривается, как собрать терморегулятор на транзисторах:

Самодельный термостат на транзисторах

Теперь расскажем как сделать регулятор температуры для теплого пола. Рабочая схема срисована с серийного образца. Пригодится тем, кто хочет ознакомиться и повторить, или как образец для поиска неисправности прибора.

Центром схемы является микросхема стабилизатора, подключенная необычным способом, LM431 начинает пропускать ток при напряжении выше 2,5 Вольт. Именно такой величины у данной микросхемы внутренний источник опорного напряжения. При меньшем значении тока она ни чего не пропускает. Эту ее особенность стали использовать во всевозможных схемах терморегуляторов.

Как видим, классическая схема с измерительным плечом осталась: R5, R4 – дополнительные резисторы , а R9 — терморезистор. При изменении температуры происходит сдвиг напряжения на входе 1 микросхемы, и в случае, если оно достигло порога срабатывания, то напряжение идет дальше по схеме. В данной конструкции нагрузкой для микросхемы TL431 являются светодиод индикации работы HL2 и оптрон U1, для оптической развязки силовой схемы от управляющих цепей.

Как и в предыдущем варианте, устройство не имеет трансформатора, а получает питание на гасящей конденсаторной схеме C1, R1 и R2, поэтому оно так же находится под опасным для жизни напряжением, и при работе со схемой нужно быть предельно осторожным. Для стабилизации напряжения и сглаживания пульсаций сетевых всплесков, в схему установлен стабилитрон VD2 и конденсатор C3. Для визуальной индикации наличия напряжения на устройстве установлен светодиод HL1. Силовым управляющим элементом является симистор ВТ136 с небольшой обвязкой для управления через оптрон U1.

При данных номиналах диапазон регулирования находится в пределах 30-50°С. При кажущейся на первый взгляд сложности конструкция проста в настройке и легка в повторении. Наглядная схема терморегулятора на микросхеме TL431, с внешним питанием 12 вольт для использования в системах домашней автоматики представлена ниже:

Данный терморегулятор способен управлять компьютерным вентилятором, силовым реле, световыми индикаторами, звуковыми сигнализаторами. Для управления температурой паяльника существует интересная схема с использованием все той же интегральной микросхемы TL431.

Для измерения температуры нагревательного элемента используют биметаллическую термопару, которую можно позаимствовать с выносного измерителя в мультиметре или купить в специализированном магазине радиодеталей. Для увеличения напряжения с термопары до уровня срабатывания TL431, установлен дополнительный усилитель на LM351. Управление осуществляется через оптрон MOC3021 и симистор T1.

При включении терморегулятора в сеть необходимо соблюдать полярность, минус регулятора должен быть на нулевом проводе, иначе фазное напряжение появится на корпусе паяльника, через провода термопары. В этом и является главный недостаток этой схемы, ведь не каждому хочется постоянно проверять правильность подключения вилки в розетку, а если пренебречь этим, то можно получить удар током или повредить электронные компоненты во время пайки. Регулировка диапазона производится резистором R3. Данная схема обеспечит долгую работу паяльника, исключит его перегрев и увеличит качество пайки за счет стабильности температурного режима.

Еще одна идея сборки простого терморегулятора рассмотрена на видео:

Регулятор температуры на микросхеме TL431

Простой регулятор для паяльника

Разобранных примеров регуляторов температуры вполне достаточно для удовлетворения нужд домашнего мастера. Схемы не содержат дефицитных и дорогих запчастей, легко повторяются и практически не нуждаются в настройке. Данные самоделки запросто можно приспособить для регулирования температуры воды в баке водонагревателя, следить за теплом в инкубаторе или теплице, модернизировать утюг или паяльник. Помимо этого можно восстановить старенький холодильник, переделав регулятор для работы с отрицательными значениями температуры, путем замены местами сопротивлений в измерительном плече. Надеемся наша статья была интересна, вы нашли ее для себя полезной и поняли, как сделать терморегулятор своими руками в домашних условиях! Если же у вас все еще остались вопросы, смело задавайте их в комментариях.