Мне досталась парочка вот таких:

Радио брелоков вестимых из Китая, на частоту 433.92 МГц, вот на основе их и сделано радиоуправление.

Вскрытие брелоков установило, что основой их служит микросхема кодера LX2240B . Питание осуществляется от двух литиевых батареек CR2016.


Описание этой микросхемы не сложно найти в сети. Микросхема содержит всего 4 линии данных, что позволяет подключить к ней 15 кнопок. Коды кнопок от 0x01 до 0x0F.

Формат посылки следующий:

ISN – это идентификационный номер, для которого отводиться 20 бит. Данная микросхема может содержать 1048576 комбинаций кода. Так что, совпадения маловероятны.

Synchronization code – служит для разделения пакетов данных.

Общая длинна пакета 24 бита.

Кодирование одного бита выглядит так:

Это кодирование единицы.

Это кодирование нуля.

Вот так выглядит бит синхронизации.

Единица кодируется длинным импульсом и короткой паузой, а ноль наоборот. Длительности всех импульсов и пауз между ними зависит от частотозадающих цепей микросхемы.

Сама посылка выглядит так:

Измеряя длительности импульсов(длинный импульс – 1, короткий - 0) можно декодировать сигнал.

Теперь о декодере, который построен на PIC16F886:

Приемник RR8 – RR10, на соответсвующую частоту. LED3, LED4, LED5, LED6 – индикация состояния реле. LED1 – индикация приема посылки от пульта. LED2 – запись идентификационного кода пульта. Если необходимо местное управление, то к разъему JP1 можно подключить 4 тактовые кнопки без фиксации. SG1 – звуковая сигнализация(бузер с встроеным генератором). Для большей гибкости все контакты реле выведены на разъемы, так что можно нагрузку подключать как угодно.

Прием и декодирование посылки ведется с помощью модуля ШИМ(CCP1) микроконтроллера, настроенного в режим захвата. Для большей помехозащищенности прием ведется по детектированию импульсов и по детектированию пауз между ними, таким образом в конце приема мы получаем две посылки, одну прямую, другую инверсную. Сравнив которые решаем принят сигнал верно или нет. В начале каждого захвата TMR1 работающий совместно с модулем CCP1 сбрасываем не давая ему переполнится при приеме данных. Если произойдет прерывание от TMR1, то это будет свидетельствовать о окончании передачи данных или о приеме помехи, или о потере сигнала. Код снабжен достаточно подробными коментариями, так что здесь не привожу куски кода.

Переключатель S1 – задает режим работы устройства.

S1-5 – вкл./выкл. Звуковой сигнализации.

S1-6 – запись. Добавление/удаление в память кода ISN пульта управления, (максимум 4 шт.).

S1-1, S1-2, S1-3, S1-4 – режим работы реле, с фиксацией или без фиксации(каждого канала не зависимо). В режиме записи номер ячейки памяти.

Добавление пульта в память:

S1-1, S1-2, S1-3, S1-4 – поставить в состояние выкл. S1-6 – поставить в состояние вкл., при этом загориться LED2. Переключателями S1-1, S1-2, S1-3, S1-4 – выбираем ячейку памяти в которую будем записывать. При этом LED2 количествами миганий будет указывать на номер выбраной ячейки. Нажимаем на любую кнопку пульта, короткий звуковой сигнал и свечение LED2 укажут на завершение записи. Выбираем другую ячейку и повторяем действия.

Удаление пульта:

S1-1, S1-2, S1-3, S1-4 – поставить в состояние выкл. S1-6 – поставить в состояние вкл., при этом загориться LED2. Переключателями S1-1, S1-2, S1-3, S1-4 – выбираем ячейку памяти которую необходимо очистить. При этом LED2 количествами миганий будет указывать на номер выбраной ячейки. Нажимаем на любую кнопку пульта который уже занесен в память, два коротких звуковых сигнала и свечение LED2 укажут на завершение очистки. При необходимости, выбираем другую ячейку и повторяем действия.

Ну и готовое устройство выглядит так:

Дальность действия в условиях прямой видимости сотавляет 50…70 метров.

Радиоуправление своими руками на 12 команд

Схема позволяет управлять моделями или другими устройствами и нагрузками на расстоянии .Допускается нажатие одновременно до 8 кнопок. Схема проста в изготовлении,и требует после сборки только прошивки контроллеров.Индикаторы исполнения команд – светодиоды. Разумеется, к соответствующим выводам процессора можно подключить например затворы мощных полевых или базы биполярных транзисторов через токоограничивающие резисторы.

Схема передатчика:



Приемник


Сверхрегенератор: При номиналах указанных на схеме и исправных деталях обладает 100% повторяемостью.


Его настройка заключается лишь в раздвигании витков контурной катушки и подборе емкости связи с антенной.3 й вывод контроллера дешифратора служит для контроля прохождения сигнала при настройке (программно подключенный выход внутреннего компаратора).Контролировать можно с помощью обычного УНЧ.
Дешифратор приемника – PIC16F628A , он осуществляет декодирование и исполнение принятых команд.

Система кодер - декодер может работать как по проводам так и с другими приемником и передатчиком. Каждая посылка 0 и 1 со стороны кодера «закрашена» колебаниями 5,5 кГц для лучшей помехозащищенности + передача контрольной суммы.
Питание приемника обязательно от стабилизированного источника 5 вольт (на схеме не показан, в плате предусмотрен КРЕН 5 А +диод). Питание передатчика от 3,6 вольта но не больше 5,5 вольта (на плате предусмотрен КРЕН 5А+диод).
Картина нажатых кнопок в PORTB (выводы 6 - 13) на передающей части полностью отражается на приемной части в PORTB (выводы 6 - 13) соответственно. Картина нажатых кнопок в PORTA (3>2, 4> 15,15> 16, 16> 17).

В этой статье, вы увидите как сделать радиоуправление на 10 команд своими руками. Дальность действия данного устройства 200 метров на земле и более 400м в воздухе.



Схема была взята на сайте vrtp.ru
Передатчик

Приемник


Нажатие кнопок может производиться в любой последовательности, хоть все сразу все работает стабильно. С помощью его можно управлять разными нагрузками: воротами гаража, светом, моделями самолетов, автомобилей и так далее… В общем чем угодно, все зависит от вашей фантазии.

Для работы нам потребуются список деталей:
1) PIC16F628A-2 шт (микроконтроллер) (ссылка на алиекспрес pic16f628a )
2) MRF49XA-2 шт (радио трансмиттер) (ссылка на алиекспрес MRF 49 XA )
3) Катушка индуктивности 47nH (или намотать самому)-6шт
Конденсаторы:
4) 33 мкФ (электролитический)-2 шт
5) 0,1 мкФ-6 шт
6) 4,7 пФ-4 шт
7) 18 пФ-2 шт
Резисторы
8) 100 Ом-1 шт
9) 560 Ом-10 шт
10) 1 Ком-3 шт
11) светодиод-1 шт
12) кнопки-10 шт
13) Кварц 10MHz-2 шт
14) Текстолит
15) Паяльник
Как видите устройство состоит из минимум деталей и под силу каждому. Стоит только захотеть. Устройство очень стабильное, после сборки работает сразу. Схему можно делать как на печатной плате. Так и навесным монтажом (особенно для первого раза, так будет легче программировать). Для начала делаем плату. Распечатываем


И травим плату .

Припаиваем все компоненты, PIC16F628A лучше припаивать самым последним, так как его нужно будет еще запрограммировать. Первым делом припаиваем MRF49XA


Главное очень аккуратно, у нее очень тонкие выводы. Конденсаторы для наглядности. Самое главное не перепутать полюса на конденсаторе 33 мкФ так как у него выводы разные, один +, другой -. Все остальные конденсаторы припаиваете как хотите у них нет полярности на выводах


Катушки можно использовать покупные 47nH но лучше намотать самому, все они одинаковые (6 витков провода 0,4 на оправке 2 мм)

Когда все припаяно, хорошо все проверяем. Далее берем PIC16F628A, его нужно запрограммировать. Я использовал PIC KIT 2 lite и самодельную панельку
Вот ссылка на программатор ( Pic Kit2 )


Вот схема подключения


Это все просто, так что не пугайтесь. Для тех кто далек от электроники, советую не начинать с SMD компонентов, а купить все в DIP размере. Я сам так делал в первый раз


И все это реально заработало с первого раза


Открываем программу, выбираем наш микроконтроллер

Уважаемый 4uvak. Собрал на днях сие чудо на 4 канала. Использовал радио модуль FS1000A, Пашет конечно же все как и написано, за исключением дальности, но думаю это радио модуль просто не фонтан, от того и стоит он 1,5$.
Но собрал я его для того что бы привязать его к broadlink rm2 pro и тут у меня нифига не получилось. Broadlink rm2 pro его увидел, считал его команду и сохранил в себе, но когда он отсылает команду на декодер, последний ни как не реагирует. Broadlink rm2 pro рассчитан по заявленным характеристикам на работу в диапазоне 315/433 МГц, но сие чудо он не принял в свои ряды. Далее последовали танцы с бубном..... В broadlink rm2 pro есть функция как таймер на несколько команд и я решил поставить broadlink rm2 pro задачу на отправку одной и той же команды несколько раз с интервалом 0 секунд, НО!!! Записав одну команду дальше записывать он отказался мотивируя тем, что нет больше места в памяти для сохранения команд. Следом я попробовал сделать ту же операцию с командами от телевизора и он записал 5 команд без проблем. Отсюда я сделал вывод, что в написанной вами программе очень информативные и большие по объему команды отсылаемые кодером на декодер.

Я в программировании МК абсолютный ноль и ваш проект это первый в моей жизни собранный и работающий пульт. С радио техникой никогда не дружил и профессия у меня далека от электроники.

Теперь вопрос:

Если всё же как я полагаю отсылаемый кодером сигнал длинный и большой, то можно его сделать максимально мизерным???, с той же базой, что бы не менять обвязку МК и схему.

Я понимаю, что любой не оплачиваемый труд считается за рабство:))))) , а посему готов оплатить ваш труд. Я конечно же не знаю, сколько это будет стоить, но думаю цена будет адекватной проделанной работе. Я хотел вам перечислить деньги но там где было написано, там в рублях и непонятно куда отправлять. Я не резидент РФ и живу в Кыргызстане. У меня мастер кард $. Если есть вариант отправить вам деньги на вашу карту то будет хорошо. В рублях я даже не знаю как это делать. Возможно есть и другие легкие варианты.

Задумал я это потому, что после того как приобрел broadlink rm2 pro подключил тв и кондиционер за бесплатно, а вот остальные радио штучки у нас какие то не дешевые. В доме 19 выключателей на свет, по 3-4-5 штук на комнату и покупать на все выходит очень накладно. Да и розетки хотелось бы переделать на управлении, иначе какой же это умный дом получается.

В общем задача у меня сделать пульты своим руками, что бы они не путали друг друга и главное что бы их понимал broadlink rm2 pro . На данный момент он пульт по вашей схеме не понимает.

В обсуждении я написать не смог, там только зарегистрированные пользователи пишут.

Жду вашего ответа.

Описываемая аппаратура может быть использована для управления авиа- и судомоделями по радио в диапазоне частот 27,6—28 Мгц. Дальность действия аппаратуры в воздухе до 3—5 км, на земле — до 400—500 м. Аппаратура испытана на модели ракетоносца на гусеничном ходу, получившей приз на 22-й Всесоюзной выставке радиолюбителей-конструкторов.

Передатчик

Принципиальная схема передатчика показана на рис. 43. Задающий генератор собран на транзисторе Т1. Его колебательный контур L1C2 настроен на частоту 13,8—14 Мгц. Колебания высокой частоты через катушку связи L2 подаются на базу транзистора Т2 каскада удвоения частоты. Смещение на базе транзистора автоматическое, за счет детектирования токов высокой частоты эмиттерным переходом. Колебательный контур L3CC6 в цепи коллектора настроен на частоту 27,6—28 Мгц. Напряжение высокой частоты с этого контура подается на эмиттер транзистора Т3 выходного каскада передатчика.

В коллекторную цепь транзистора Т3 включен выходной контур L5C9, настроенный на частоту 27,6—28 Мгц. Связь антенны с выходным контуром емкостная, через конденсатор С10. Для увеличения отдачи энергии в антенну применена «удлинительная» катушка L6, которая вместе с антенной настраивается в резонанс с частотою выходного контура передатчика.

Антенной служит телескопическая антенна длиной 1 м от переносных приемников.

Модулятор на транзисторах Т4 и Т5 представляет собой генератор звуковых частот. Включая в цепь базы транзистора Т5 при помощи кнопок Кн—Кн4 конденсаторы С12—C15, можно получить четыре фиксированные звуковые частоты: 4 500, 4 000, 3500, 3000 гц, необходимые для подачи команд.

Рис. 43. Схема передатчика радиоуправления моделями.

В коллекторную цепь транзистора Г5 выходного каскада модулятора включен трансформатор Тр1. Напряжение звуковой частоты с вторичной обмоткой этого трансформатора подается в цепь базы Транзистора Т3 выходного каскада передатчика, осуществляя модуляцию несущей. При таком подключении модулятора к передатчику мощность модулятора может быть небольшая, а глубина модуляции выходного каскада достигает 70—85%.

Выходная мощность передатчика 1,5—2 вт.

Конструкция и детали. Детали передатчика монтируют на плате из листового гетинакса или стеклотекстолита размерами 130 X Х120 мм. Монтажную плату вместе с батареей питания (4 шт. Л-0,5) размещают в металлическом корпусе размерами 200X140X55 мм.

Расположение основных деталей на плате показано на рис. 44, а внешний вид передатчика со стороны передней панели — на рис. 45.

Данные катушек и дросселей передатчика приведены в табл. 4.

Транзисторы П403 можно заменить транзисторами П420— П423, П416, а МП40 — транзисторами МП39, МП41, МП42.

Рис. 44. Расположение деталей на панели передатчика.

В качестве выходного трансформатора модулятора применен согласующий трансформатор От карманного приемника, вторичная обмотка которого используется как модулирующая. Конденсаторы Са, С3, С6 и С9 типа КПК-1. Все резисторы, кроме R5, типа УЛМ или МЛТ, Резистор R3 проволочный (2,5 мм провода ПЭЛ 0,1), намотан на корпусе резистора ВС-0,25 сопротивлением не менее 10 ком. Кнопки Kн1—Kн4 любого типа.

Настройку передатчика начинают с проверки задающего генератора. При включении питания миллиамперметр в коллекторной цепи транзистора Т1 должен показывать ток в пределах 5—12 ма, а при замыкании катушки L1 уменьшиться на 2—3 ма. Если при замыкании катушки ток не изменяется, что указывает на то, что задающий генератор не работает, генерации добиваются подстроеч-ным конденсатором С3.

Частоту задающего генератора проверяют с помощью , она должна быть в пределах 13,8—14 Мгц. Изменением емкости конденсатора С3 добиваются, чтобы ток, потребляемый этим каскадом от батареи, был в пределах 10—12 ма. Такой ток соответствует наилучшему режиму работы задающего генератора.

Рис, 45. Расположение органов уп равления на панели передатчика.

Контур L3C5С6 конденсатором С5 настраивают на частоту 27,6—28 Мгц. Момент резонанса можно определить по ГИР, настроенному на эту частоту, поднеся его катушку к катушке L3. В момент резонанса стрелка прибора должна максимально отклониться. Можно также воспользоваться простейшим высокочастотным пробником — витком провода ПЭВ 0,8, замкнутым на лампочку накаливания 25 в X 0,075 а. Если виток пробника надеть на катушку Л3, то в момент резонанса лампочка должна слабо светиться. Не исключено, что для точной настройки контура L3C5C6 на частоту 27,6—28 Мгц придется подбирать емкость конденсатора С5.

После этого настраивают выходной каскад передатчика. При настройке контура L5C9 конденсатором С9 на частоту 27,6—28 Мгц в момент резонанса миллиамперметр в цепи этого контура должен показывать минимальный ток, а лампочка высокочастотного пробника, поднесенного к катушке L5 ярко светиться.

Для настройки антенны потребуется простейший волномер, схема которого показана на рис. 46.

Для контроля настройки антенны в резонанс с выходным каскадом передатчика параллельно дросселю Др2 подключают миллиамперметр на ток до 15 ма. Волномер, снабженный антенной в виде отрезка провода длиной 1 м, настроенный на частоту 27,6—28 Мгц, относят от передатчика на такое расстояние, при котором стрелка его прибора находится в середине шкалы. Поворачивая сердечник «удлинительной» катушки L6, добиваются наибольшего отклонения стрелки прибора волномера. Ток, потребляемый транзистором Тз при настройке антенны в резонанс с частотой выходного каскада передатчика, должен увеличиться в 1,5—2 раза.

При настройке антенны может понадобиться подстройка выходного контура передатчика конденсатором С9.

Последним проверяют работу модулятора. При нажатии любой из кнопок в телефонах, включенных параллельно вторичной обмотке Тр1, должен появиться звук. Если звука нет, то проверяют детали и монтаж модулятора. Одной из ошибок в модуляторе может быть неправильная полярность включения диода Д1.

Для проверки частоты модулятора к обмотке II трансформатора Тр1 параллельно телефонам через конденсатор емкостью 0,01 подключают звуковой генератор. Нажав кнопку Кн1 изменяют частоту генератора, подгоняя ее под частоту модулятора. При равенстве частот генератора и модулятора в телефонах слышен звук одного тона.

Частота модулятора при нажатии кнопки Kh1 должна быть близкой к 3 000 гц. Подогнать эту частоту модулятора можно подбором емкости конденсатора С12.

Точно так же настраивают модулятор на другие командные частоты; при нажатии кнопки Кн2- на частоту 3 500 гц, кнопки Кн3 — на частоту 4 500 гц и кнопки Кн4 — на частоту 4 000 гц.

При нажатии любой из кнопок модулятора ток выходного каскада передатчика должен возрастать на 20—30%.

Настроенный передатчик вставляют в металлический корпус.

Приемник

Принципиальная схема приемника радиоуправляемой модели, рассчитанного на совместную работу с описанным передатчиком, показана на рис. 47. Первый каскад приемника является сверхрегенеративным детектором. После детектирования сигнал усиливается трех-каскадным усилителем низкой частоты и подается на вход блока электронных реле дешифратора.

Преимущество сверхрегенератора — его большая чувствительность при малом числе деталей. Так как несущая командного сигнала не стабилизируется кварцем, то незначительный уход частоты передатчика существенно не скажется на работе приемника.

Сверхрегенеративный детектор собран на транзисторе Т1. Обратная положительная связь между коллекторной и базовой цепями осуществляется через конденсатор С3. По высокой частоте нагрузкой каскада служит колебательный контур L1C3. Дроссель Др1 преграждает путь токам высокой частоты в Усилитель низкой частоты.

Резистор R3 является нагрузкой детектора по низкой частоте. Одновременно на нем выделяется напряжение частоты гашения сверхрегенератора, которому путь к усилителю низкой частоты преграждает фильтр C6R4C7.

С выхода усилителя низкой частоты сигнал через конденсатор С12 и резисторы R13 —R16 поступает на электронные реле дешифратора. Если на колебательный контур электронного реле, например на контур L2C13, подать переменное напряжение частотой 4 500 гц, причем колебательный контур настроен на эту частоту, на нем выделится максимальное напряжение этой частоты. При этом между базой и эмиттером транзистора Т5 потечет переменный ток, частично выпрямленный диодом Д1. Создающееся на диоде напряжение со знаком минус подается на базу, а плюс— на эмиттер, обеспечивая необходимое смещение рабочей точки транзистора. Усиленный транзистором переменный ток создает на обмотке реле Р1 падение переменного напряжения, которое через конденсатор С14 подается в колебательный контур. Чем больше напряжение на контуре, тем больше будет Выпрямляемое диодом напряжение, тем отрицательнее напряжение на базе и больше ток через транзистор. Наступает насыщение транзистора. В этот момент напряжение источника питания почти полностью оказывается приложенным к обмотке реле. При этом реле срабатывает, его контакты замыкаются и включают ходовой электродвигатель.

Точно так же работают три других электронных реле на транзи-сторах Т6—Т8, только их контуры настроены на другие командные частоты передатчика: контуры L3C15—на частоту 4 000 гц контур L4C7 на частоту 3500 гц, контур L5C20 —на частоту 3 000 гц. Резисторы R13—R16 устраняют взаимосвязь между контурами реле.

Рис. 47. Схема приемной аппаратуры радиоуправления моделями.

В приемной аппаратуре три исполнительных электродвигателя. При замыкании контактов P1 когда включается электродвигатель ЭД1 модель будет поворачиваться вправо или влево. При замыкании контактов Р2, когда включается электродвигатель ЭД2, модель делает поворот в другую сторону, когда же сработает реле Р4 и его контакты включат два электродвигателя — ЭД1 и ЭД2, модель будет двигаться прямо. Электродвигатель ЭД2 предназначен для выполнения любой другой команды. В модели ракетоносца, где работала эта аппаратура, он применялся для подъема ракет. Выключатели Bki и Вк2 для этого случая являются конечными выключателями, разрывающими цепь питания электродвигателя при полном подъеме или опускании ракеты.

Электролитические конденсаторы С21—С26 снижают уровень помех приемнику, создаваемых работающими электродвигателями.

Электродвигатели питаются от двух соединенных параллельно батарей КБС-Л-0,5.

Детали и конструкция. Детали приемника и электронных реле дешифратора смонтированы на плате размерами 135X80 мм (рис. 48).

Катушка L1 сверхрегенеративного детектора намотана на полистироловом каркасе диаметром 6 мм с алюминиевым сердечником диаметром 4 мм. Катушка содержит 12 витков провода ПЭЛ 0,6, длина намотки 10 мм.

Дроссели Др1 и Др2 имеют одинаковые конструкции: на корпус резистора ВС-0,25 сопротивлением не менее 100 ком намотаны четыре секции из 2,5 м провода ПЭЛ 0,12.

В высокочастотной части приемника следует применить конденсаторы типа КТК или КДК. Контурные катушки электронных реле намотаны проводом ПЭЛ 0,1 на четырехсекционных каркасах с сердечниками СЦР-1 (каркасы фильтров промежуточной частоты радиовещательных приемников). Катушки L2 и L3 содержат по 1 200 витков, L4— 1 400 витков, L5 — 1 500 витков. Электромагнитные реле Р1 Р2, Р4 типа РЭС-10 или, в крайнем случае, типа РСМ, Р3 — типа РЭС-6. Сопротивление обмоток реле должно быть в пределах 400—600 ом. Контактные пружины нужно так отрегулировать, чтобы реле надежно срабатывали при токе 10—14 ма.

Монтаж приемника должен быть механически прочным.

Рис. 48. Расположение деталей приемника и дешифратора на монтажной плате.

Настройку приемника начинают с проверки усилителя низкой частоты. На вход усилителя параллельно конденсатору С7 через резистор сопротивлением 100 ком подают сигнал звукового генератора частотой 1 000 гц, а к выходу усилителя (между плюсовым проводником и положительной обкладкой конденсатора С12) подключают высокоомные телефоны. Изменяя сопротивление резистора R6, добиваются наибольшего неискаженного усиления сигнала генератора. При отключении звукового генератора в телефонах должен прослушиваться характерный для сверхрегенеративного детектора шум, напоминающий звук примуса. Подбирая номинал резистора R1 добиваются максимальной громкости этого шума. Далее по сигналу генератора высокой частоты контур L1C3 приемника настраивают на частоту 27,8 Мгц сердечником катушки L1. Если частота контура значительно отличается от сигнала генератора, то сжимают или, наоборот, раздвигают витки катушки, добиваясь, чтобы настройка контура на частоту 27,8 Мгц была при среднем положении сердечника в катушке L1.

Если сверхрегенератор не работает, то надо заменить транзистор Т1 — не все высокочастотные транзисторы хорошо работают в режиме сверхрегенеративного детектирования.

Окончательная настройка приемника производится при совместной работе с передатчиком. Включив передатчик, нажимают кнопку Кн4 (частота модуляции 4 500 гц). Приемник, не подключая к нему антенну, располагают на расстоянии 20—80 см от передатчика и сердечником катушки L1 настраивают его на несущую частоту передатчика. При точной настройке контура L1C3 на частоту передатчика сверхрегенеративный шум должен исчезнуть, а в телефонах, подключенных к выходу усилителя низкой частоты, должен громко прослушиваться тон модуляции. При этом на резисторе R10 должно развиваться переменное напряжение с частотой модуляции передатчика в пределах 1—4 в.

Теперь последовательно с обмоткой реле Р1 надо включить миллиамперметр на ток 50 ма и подбором конденсатора C13 контура L2С13 добиться наибольшего тока через реле Р1. Затем изменяют сопротивление резистора R1 (вместо него полезно поставить переменный резистор на 50 ком), устанавливают ток через реле Р1 10—12 ма — ток четкого срабатывания реле. Нужно добиться, чтобы с увеличением сопротивления резистора R1 ток через реле резко уменьшался, а при уменьшении возрастал бы незначительно, а всякое изменение положения сердечника в катушке L2 вызывало уменьшение тока в коллекторной цепи транзистора Т5.

Точно так же настраивают колебательные контуры трех других электронных реле. Может оказаться, Что только сердечниками катушек не удается настроить контуры в резонанс с частотами модуляции передатчика. В таких случаях изменяют емкости конденсаторов, входящих в колебательные контуры, на 2 000—5 000 пф.

Хорошо налаженный приемник без подключения к нему антенны должен принимать сигналы передатчика на расстоянии до 50 м от него.

В зависимости от размеров модели устанавливаемые на ней приемник и блок электронных реле дешифратора могут быть смонтированы на отдельных платах. Антенной приемника может служить любой провод длиной около 1 м с хорошим изоляционным покрытием.